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MAGNETICDIPOLEMOMENT DETERMINATION

BY NEAR-FIELDANALYSIS

by

W. L. Eichhorn

Goddard Space Flight Center

CHAPTER I

INTRODUCTION

A spacecraft orbiting in the earth's magnetic field will be subject to forces and torques resulting

from the interaction between the earth's field and onboard currents and magnetic matter. Since the

earth's field is uniform over the volume of the spacecraft, this interaction may be described solely in

terms of the dipole moment of the spacecraft. There are two ways to determine this moment. One is

by direct measurement of the torque acting on the spacecraft in a known magnetic field. The other is

by a suitable analysis of the spacecraft magnetic field. In cases where torque measurement is impossi-

ble, one must rely entirely on magnetic measurements.

This report presents a refined version of the method of dipole moment determination described

in Reference 1. It discusses a technique designed to analyze the near-field portion of the spacecraft's

magnetic field. The near field is defined as that part of the spacecraft's field that can not be satisfac-

torily represented by a centered dipole field. This region begins on the surface of the smallest sphere

that completely encloses the spacecraft and extends outward until the spacecraft's field is considered

"sufficiently dipolar." This transition from a nondipolar to a dipolar field is not at all well defined

and frequently occurs at large distances from the spacecraft.

If, for some reason, measurements cannot be made in the far-field (dipolar) portion of the space-

craft's field, data must be taken in the near field. It is here that one lacks a satisfactory data analysis

technique. The only techniques available for analysis in this portion of the field require data that are

difficult if not impossible to obtain. Two such techniques are described in References 2 and 3, and

the difficulties with both of them are obvious. Each requires data to be taken on some closed surface

surrounding the spacecraft. Whether or not these data can even be obtained depends upon the particu-

lar spacecraft in question. However, even at best, data collection is tedious and time consuming. Also,

it would be difficult to devise a data collection system with sufficient flexibility to deal with any type



of spacecraft. Thesearemajor drawbacks, rendering any near-field analysis technique requiring this

type of data highly impractical.

The only points at which the spacecraft's field can easily be measured lie in a horizontal plane or

on a vertical line, both of which pass through the center of the spacecraft. If one could calculate the

spacecraft's dipole moment from these data, the near-field problem would be solved. Unfortunately,

an exact determination of the dipole moment from this limited amount of data is, in principle, impos-

sible. However, it was found that if an assumption were made about the nature of the field, the calcu-

lations could be done. The spacecraft's field can be assumed to be adequately approximated by the

superposition of a certain number of multipole fields. If this assumption is made, a unique solution

for the dipole moment exists. However, if the assumption is invalid, there will be an error present in

"the calculations. Therefore, this type of near-field analysis must also include a procedure by which

one can determine the magnitude o__this error. If this can be done, one can specify limits within

which the true dipole moment must lie. Only then is the task complete.

This report presents a technique which satisfies the above requirements. In the interest of com-

pleteness, the theory is developed from first principles and carried through to final form. The accuracy

of the method has been carefully evaluated by computer simulation of many sample cases. The results

of these tests are discussed along with recommendations for the applications of this technique.
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CHAPTER II

THEORETICAL CONSIDERATIONS

Magnetically, a spacecraft is a localized source containing macroscopic currents and magnetic

matter that give rise to a magnetic field. This field obeys Maxwell's equations everywhere in space.

The problem is to determine the form of this field in terms of the parameters of the source. There are

several ways in which one can do this. The formalism which will be used here involves an expansion of

the field in terms of known vector functions of the angular coordinates, and solution for the coeffi-

cients of this expansion by the use of Maxwell's equations. These vector functions are known as "vec-

tor spherical harmonics" and are most commonly found in the literature of quantum mechanics. They

are, however, a purely mathematical formalism, useful also for describing classical fields. A discussion

of them is included in Appendix A and only the directly relevant portions will be employed in the

main text. It is necessary, however, to start with several preliminary definitions.

Throughout the text all functions will be referenced to a coordinate system whose origin, 0, is

located somewhere within the source. The coordinates used will be either spherical polar or Cartesian

(Figure 1). The vector spherical harmonic formalism requires the definition of so-called "spherical

unit vectors." These vectors will be designated by e+l, %, and e_ 1, and are defined as

1
e+ 1 (ul + iu 2) ,

and
e 0 = u 3 ,

1

e_l - x/r_ (Ul - iu2) ,

where i = _/----T. These vectors have the following pr6perties:

(1) The complex conjugate is given by

(2) The scalar product satisfies

(3)

vector V are given by

e7 = (- 1)ie_ i .

e* eq .q, , = _ qq,

Any vector can be expressed in terms of these unit vectors. The spherical components of a

j=-+],o.

3



x 3 or z axis

0

u 3

X 1

-X 2

2 _-- X2 or y axis

r = u 1 cosqb sin 0 + u 2 sin _ sin 8 + u 3 cos 0

0 = u 1 cos_b cosO + u 2 sinq_ cose - u 3 sin 8

=-u 1 cos_b+u 2sin

Figure 1--Coordinates of the position vector r in Cartesian and spherical polar coordinate systems.

If the spherical components of the vector are given, the vector appears as

+1

v= _2 (-1?v/%
]=-1 m

+1

--y
/=-1

In terms of the associated Legendre functions p_(cos 0), given by the equation

(¢x):_y/--_-i].(] - x2)m/2 (x2- ] )y'

ordinary spherical harmonics Ylm(O, 4)) can be defined by

4
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y/m(O, dp)=(-1)m_/24+l(]-m)! m(] + m)!.P_ (cos O)eim¢ .
(2)

MOThe vector spherical harmonics Y}_( , ¢) can now be defined as

+k +1

m=-k q=-I

Ykm(O, 4))Ckl (J,M; m, q)eq , (3)

where the quantities Ckl(J,M; m, q) are known as Clebsch-Gordan coefficients.

The formulas for the coefficients appropriate to this discussion are given in Appendix A, Table

A-1. They exhibit the property that Ckl = 0 unless k = J +- 1 ,J and M = m + q.

This means that for each value of J except J = 0 there will be three vector spherical harmonics.

Since the functions Ykm form a complete set for scalar functions and the eq are a complete set of basis
vectors, the functions in Equation 3 also form a complete set for vector functions in three dimensions.

Hence, any vector field may be written as a linear combination of the Y_k, with coefficients depending

on the radial coordinate alone.

Let the steady-state current density distribution within the source be denoted by J(r) and the

magnetization density by M(r). Let these sources give rise to a magnetic vector potential A(r) and a

magnetic flux density B(r) related to it by B = V × A. According to the usual conventions, one defines

the magnetic field strength H(r) by H -- B/p 0 - M in rationalized MKS units. These functions then sat-

isfy the following equations:

and

t J(r) , inside

V×H(r) [0, outside

p0J(r) +/s o V × M(r), insideV x B(r) = 0, outside '

= t P°J(r) + P0 V × M(r), inside
V X V × A(r)

[ 0, outside
o

These equations are valid throughout all space. (Note that J and M are zero outside the source.)

If A and B are expanded in terms of the vector spherical harmonics,

+] +1

]=0 m =-] k=-i

dk(], rn, r) y/m/+k( O, ¢)

+]

]=0 m =-]

5



an d

oo +1 + l

_"=E E E <"__'v+,<_°,+,
/'=0 m=-j k=-I

+/

=S _ B'm (r) "

j=O m =-j

The quantities _'m and B/m are known as "pure multipole fields".

Outside the source, one must require that

V'B/m =VXB/m =0.

Therefore (from Appendix A, Equations A-6, A-7, and A-8),

ri,+.,,_.. =/V2->7t7+ +,
and, from Vx Bjm = O,

' (.2 + <, +:7>7 ._

+_rG
Since the functions _ and Y/m are not zero, their coefficients must be. Hence,

+ d_l + V/7 d /- d'
r -1=0

and

r] °Y_i'i+l + _ + 4Y_i,i_l =0.

J + <1 + /_/7-_ d -9J d' 1 =0,
F

so that

(4)

(5)

and

(_ 'r+-')+ do = O. (6b)

The solution for Equations 6a and 6b exists only when d o = 0. The solutions for Equations 4 and
5 exist when

(_rr L__) (_r i- l) ,+ d+l = r d'_l =0.



Therefore, one must require
t

d+l _ t;J -2

d'_l _ r/-1 .

In a region containing no sources, Bjm must therefore have the form

a

B]m (r) = rj+----_ v]m]+l (0,_b) + br j-1 Y_,]_I(0,¢), (7)

where a and b are constants.

In order to give this form for B/m, the fields Aim must be of the form

/_m (r) = do(J,m,r)Y]r_(O ,¢). (8)

This is so because V × y]m,/+_1 leads to terms that contain the functions Y_, which are not found in

Equation 5. Hence, one is free to take d+_l(],m,r) = O.

In order to determine the quantity d o in Equation 8, the equation

V x [ V x A(r)] = poJ(r) + po V x M(r) (9)

must be solved.

and

NOW,

From Appendix A, Equations A-3, A-4, and A-5,

V×A]m _ _ _ doY_,,]+l + _ d "

1

v× (V A/m) - 2]+1

]- + =_

r dr 2

2 d ](] + 1)
"Jl" .....

r dr r 2

as can easily be verified by expansion of the expressions in brackets. Hence,

V× (VXA]m)=- dldrr2
+ 2 d ](]+ 1)_-]do(J,m,r)yj _ = _A(r)do(J,m,r)y7 ] .

r dr r2 J
Therefore,

Since

Vx[VxA(r)] =

q

]=0 m=-]

-A(r) d o (],m,r)Y]](O ,¢) = P0 J(r) + p o V x M(r).

f t
[Y_(O,¢)]*- [Y_k,(O,¢)]d_2 = 5]], 6kk, 6mm' '

7



the following equation for d o (Lm,r) is obtained:

+ d O(j,m,r) = - P0 (0', _b')]*- [J(r') + V x M(r')] d_2(r')
r dr r2

= - K(/,m,r). (t0)

The function d o can now be obtained with the use of Green's functions. Consider the operator 2x given
by

d 2 2 d
zX(r) =- +

dr 2 r dr

-- r 2

r 2 dr

j(/ + ])

r 2

/(j+ 1)

Consider the integral

fo _

I = g(Af)r 2 dr

To fod 2d
= g-drr dr-/(f+ 1) gfdr.

If this is integrated by parts twice,

I= gr2 --_rf - fr2 --_rg + f -_r dr - f(j + 1) gf dr .
0 I0 .a

(11)

Iff and g are required to approach zero faster than 1/r as r approaches infinity, and if they are not

infinite at r = O, the first two terms disappear, and

f0 fog(Af)r 2 dr = f(Ag)r 2 dr. (12)

Now, if the solution to the equation

8(r, r')
A(r)g(r, r') - ( 13)

r 2

were known, the solution to the arbitrary equation

A(r)f(r) = f'(r)

could be found as follows: Multiply Equation 14 by r2g(r,r ') and integrate, so that

(14)



foo" for2g(r,r ') [A(r)f(r)] dr = g(r,r')f'(r)r 2 dr.

By Equation 12, this reduces to

fo for2 f(r)[ A(r)g(r,r')] dr = f(r)6(r - r') dr

= f(r').

Hence, the solution to Equation 14 is

f0 _

f(r') = g(r,r')f(r)r 2 dr.

Therefore, the solution to Equation 13 is needed.

Ifr = r',

+
2d

rdr ](]+ 1!]r 2 g](r,r') = 0 .

The solutions are

I Ar + A'r -(]+1) for r < r'
gj(r,r') =

B'r + Br -(]+1) for r > r'

The boundary conditions on g are, from Equation 1 1, g/approaches zero as r approaches infinity

and g] approaches infinity as r approaches zero.

This can be written as

r lg]( ,r ) =

Therefore, A' = B' = 0 and

Ar ] for r < r'

Br -(]+1) for r > r'

r ]
r' C <

g]( ,r ) =
]+1

r>

where r> denotes the greater of r and r' and r< denotes the lesser of r and r'. The constant C can

now be determined so that the slope of g/has the correct discontinuity at r = r'.

If one integrates Equation 9 from r = r' - e to r = r' + e and allows e to approach zero, the value

for C will have been determined:



and

Lim
e--_o

d ?

r 2 _ g/(r, r ) dr - ](] + 1 )

r,+e 7 Cr'+°

-Jr'-_g/(r,r')d11=J/-_6(r-r')dr

=1,

Lim
e .---_o

d ?

- r 2 -_-:g/(r,r )
L_g

?,t-t-fi

=1,

Lim __d ')te-+o dr g /(r,r
rt+c

=-(/+ 1)c ,

d ?

Lime_+o_rr gj(r'r )

Therefore,

Hence,

__

1

2/+1

2] + 1 r] +1 '
>

and the solution to Equation 10 can be written as

d°(Lm'r) - 2] + 1
TTr ° P_ '2-- _tI, m,r )r dr'

r; +1

/tO

2]+1

Outside the source, r > r' always; hence,

+ V x M(r')] d_2 r '2 dr' .

1 Po f

Jr'][Y/7(O',¢)]*. [J(r')+ V× M(r')] dV,d o(Lm,r)- r ]+1 2]+1

where dV is an element of volume defined by/2 dr? d_. Now, the solution for A(r) is

A(r) = _+ 1Y_ (0,¢) ,
r]+ 1

]=o m=-]

10



where

fr'J[Y_ (0',qS']*" [J(r') + V x M(r')l dVDim =/20

The magnetic flux density B(r) and the magnetic field H(r) outside the source are obtainable from the

relation/20H(r) = B(r) = V × A(r). Hence, from Equation A-5, Appendix A,

+/

f= 1 m =-j

i ' J 1
- _2/+ 1D:mYj_+I(O':)/+2

which is of the form of Equation 7 with b = 0.

Using Equation A-10, Appendix A, one may write

1,, I '1r]+ 2Ym;+l (O ,(o) = [(2] + 1)(j + 1)]-1/2_7 r]+l jrn (O,(p

Hence,

B(r) = - V
i ]--- Ojm Yjm(O'_))

j=l m=-j

The term Dim

where V is an arbitrary vector.

= - V U(r).

may now be reduced to a more convenient form. Consider the integral

ftv_ (o v da,,_)]_

From Equation A-9, Appendix A,

LY/m (0 ,q_)

Yj(0,,_= ¢7i7+1_'
where L =-ir x V. Then,

In the spherical vector notation,

=f tL*_Tm¢o,,)1•v aa

+1

V 1 • V 2 _ * V .• = Vii 2]

]=--1

Hence,

/-

I= I[(L*+lg* L* Y* (L;g]m)go] d_'2]m)V+l +( -1 jm)V-1 + *
J

11



Now_

and

so that

/+1

1

L+I - vl_ (Lx + iLy)

- + i cot 0 .
75

- eie ( _ -_)_f2 _ -icot0

L 0 = L z

- i
_0 '

_f * *-- (L+IY/m)V+I da

Integrating by parts yields

l fe+i_ I(_ - i cot O _)Y/ml V+l sin O dO d_) .v5

/+1 --
f2_- d_. I_

1 sin 0 e-i* Y]*m (0,0) V+ 1

V_- "10 0

e-2i¢ f_+ Cjm V/_ cos0 P.m(cos 0)V+I dO

21r

(0 ,_b) _-_ (sin 0 V+I )e -ie dO d4)

-_22fY)m _ (V+le-ie)dO dck_ i * (o,_)cosO a-_

12



Sincethe first two terms areequal to zero,

vl_j jm(O,¢)e-lea - i cot 0

Similarly,

and

Therefore,

Hence,

0)v]_-_ +1 sin 0 dO dO

! fy*.
+ v_J Im (O'S)V+1 (cos 0 e -i4' cos 0 e -i_') dO dc_

= -fv* V+I) da.]m (0 ,(p)(L *+1

=f[L* *11 _lY)m (O,q_)] V_ 1 d&"_

= -fY* L*.ira (O,c_)( -1 V-1 ) d,._,

Io = f Vo [Lo YTm (O,qS)l da

=f YTm(O,,)(L;Vo)aa.

fF* * -L* V_ 1 +LoVo)d_I = ]m (O'_)(-L+I g+x -1

(Yzm )* • V dg - 1 fY]m (L" V) dE/,,ffj(j + 1)

13



sothat

Dim
= Po f.] y.V_]+ l) ]m(O,¢)[L " J(r) + L ° V× M(r)] dY.

(-Xl J2 + 1 _y 2 -Y2 J3

J +x3 J2 - -- J]
OX 1 OX 2

This can be reduced further; consider

(r × _')• J = 2 Ox 3 x3 J1 + 3 Ox 1

=Xl J3 - _x---3 J +X2 J1

=r- (V×J)

=J - (_7 × r)-U • (r× J).

Since V × r = O, one can write

L-J=iV-(rxJ).

Now consider L • (V x M). By the previous equation,

L- (Vx M) =iV • [r x (VxM)]

=iV • [V(r -M)-Mx (Vx r)-(r "V)M-(M.V)r]

=i[V2(r'M)-U- [(r'V)M] -V'M]

NOW,

V- [(r-V)M]

= V • M + (r -V)(V • M).

Hell ce,

L" (VxM)=-i[-V2(r.M)+(r.V +2)V'M]

Therefore,

Po i

+1) (0,¢)[V • (r x J)] dV-fr/Y* /m (0,¢)(r • V + 2)(V " M) dV

+

2 (r • M) dV} .

14



The last integral vanishesupon integration by parts,sinceV2r]Y;m (0,0) = O. The second integral can

also be evaluated by integration by parts. The result is

forJ(r.V +2)(V.M)r2 dr=-(]+ l) iV.Mr2 dr.

Hence,

- I_oi fr/Y_/m(O,dp)V" [rxJ+(j+l)M] dV.
Dim _/j(j + 1)J

The magnetic flux density can now be written as

B(r) = -V +_. -I_o frjy . .(rx J +M) dV2] + 1 ]m (0 ,qb)V \_-_'-
]= 1 m =-j

Yjm (0,0)

rJ+l

= - V U(r).

It is now convenient to write this field in terms of real quantities.

From the definition of Y]m '

Then, if

and

Y/,-m (0,0) = (- 1 )m Yl'm (0 ,(b) .

f
y* t P ?

Qjm =l ]m (0 '* )f(r ) Y]m (0,_3)dV

J

Qj,-m = a;m ,

we have

+j j

Qfm =Qjo + _ (Qjm +Q;m )"

m =-] m=+l

Now_

._ /2] + 1 (j-m)!
Y/m(O'q_)= V 4-_ _;_.I P/m(cOsO)eimO =%P7 eimO

Therefore,

+eL =cL [feT(coso')cos dvey (coso)cos

+fP_(cosO')sinm_p'f(r')dVP_(cosO) cos mO] .

15



Onecannow write

where

and

B(r) -
/2 0 _ ]

V E E (a/m cos rn_ + _'m sin m_)
/=1 m=O

a]'m =-(2-6/°) (]- m)! f rJp'r-n(c°sO)c°smC V'[ r× J(r)(]+ m)! ] + 1

bjm =-2 (/+m):d , L j+ 1

These quantities will be known as multipole moment coefficients.

pm(cos 0)

r/+l

+ M(r) 1 dV

+ M(r)] dV.

(15)

(16a)

(16b)

Consider now the lowest order term in Equation 15; call this term B 1 •

/So 1

B1 - 4zr _ [al°Pl° + (all cos _ + bll sin  )el I r-S

/So 1

4zr V [alo cos 0 +all sin 0 cos (p + bll sin 0 sin _b] r 2

/So m o r

= - _ V (---_-)47r

where m is the vector whose components are a 11, bl 1' and al0. Using Equations 6a and 6b, one can
now write

:f{ 3}m r V • r × J(r) + M(r) dV.

This vector is defined as the dipole moment of the system. By Gauss' law,

jfr { V "E2 r x J(r) + M(r)l } dV= f r[lr× J(r)+M(r)]'ds+
surface

f {[{r × J(r)+M(r,] • V}r dV
volume

= f[½r× J(r)+ M.(r)] dV.

The last form is obtained because the first integral is equal to zero and (A • V)r = A in the second

integral. Hence,

m=f IlrxJ(r)+M(r)]dV.

16



Thesignificanceof this quantity canbeunderstoodfrom the following discussion.Consideran
elementof current density J dV and an element of magnetization M dV in a uniform magnetic induc-

tion B. The torque on the current element is given by

dNj =rx [J(r)dVx B]

= r × [J(r) × B] dV,

and the torque on the magnetic material is given by

dNg = M(r) x B dV.

The total torque is given by an integral over the entire source:

NOW,

N

rx [J(r) x B] xM(r) xB} dV

= fJ(r)(r" B)dV+ B f r" J(r)dV+ f M(r)× BdV.

fr'J(r) dv=lf[j(r)'_7]r2dV.

If this is integrated by parts,

f J(r)'VJr2aV=fr2J(r)'as-fr2IV'J(r) dV.
surface volume

(17)

The first integral is equal to zero since the current is localized, and the second integral is equal to zero

Hence,

• B) + M(r) x B] dV.

since the current is stationary (i.e., V • J = 0).

N =f[J(r)(r

Consider

I =/J(r)(r • B) dV.

This can be rewritten in a more complicated form:

17



fl J I 1 qI= (B ° r) -_r(B o J)+ _r(B ° J)] d

=- - x (rx J) dV+ (B • J)+J(B • r) dV.
2

3"he second integral can be shown to be equal to zero by the following argument. The ith Cartesian

component of this integral is

i(B/J/) + ff i(B/x/) dV= xiJ / + Jix/) dr.

j=l j=l

Now,

Vx: =u:.

33aerefore,

E xiJj + J.x.) dV = • (x i V x/

/=1 /=1

+ X/VXi) dV

,. B J ° _ XiX i dV
]=1

/'= 1 \surface
f xix j _7 • j d VI

volume

Both of the above integrals are zero by the same arguments as for Equation 17. Hence,

fN =- Bx [rxJ(r)] dV+ M(r) xBdV

=mxB.

Therefore, in a uniform field, the torque acts only on the dipole moment of the system. If the dipole

moment of the system is known, the torque to be expected in a given field can be computed.

18



CHAPTER III

ANALYSIS OF THE MAGNETIC FIELD

Construction of the Near-Field Equations

It is now necessary to restrict the analysis to the problem at hand. That is, it will be assumed

from now on that the magnetic field is known only at discrete points in space. The coordinates of the

ith point are restricted by

0 i = O, rr/2, rr,

rmi n _ r _ rmax,

and

0 _< ¢i _< 27r.

Here, rmi n and rma x specify the limitations on the radial coordinate and are determined for each speci-

fic case by physical limitations. The measurement of the magnetic field is usually accomplished by

rotating the source about the z-axis past a set of fixed magnetometer probes. The axes of these probes

are aligned with the Cartesian axis of the coordinate system. It therefore makes sense to speak of the

components of the magnetic field that are seen on the sensors rather than the spherical polar compo-

nents. Let us now examine these components in more detail and develop the procedure by which the

quantities of interest (a 11, bl 1' and al0 ) may be determined.

From Equation 15, the form the components must exhibit can be determined. The procedure is

to perform first the gradient operation and then, for each value of 0 (0, rr/2, rr), make the appropriate

transformation of unit vectors. These transformations are--

0=0 0=rr/2 0=rr

r = 113 r = u I r = -u 3

0 = u I 0 = -u 3 0 = -u 1

_b = U 2 q_ = U 2 _ = 112

Let B](r, ¢, cos 0) designate the component parallel to u] for a given probe location. For 0 = 7r/2,

Bl(r,¢,O) =--_ - _(#m cos me + bit n sin me)p/m(0), (lSa)
]=1 m 0 r/+2 "
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_o _o @ m
=--4-_ E Z --(aim sin m¢- bjm c°s m¢)p'm(O)B2(r, ¢,o)

"= m =0 rj+2Y5
(18b)

and

_(ajr n cosine+ bym sin m¢)_-_P/m(0) .
B3(r,¢,O ) = Gj=I rY+2

m=0

(18c)

For 0 = 0 and 0 = rr, the equations are a bit simpler, since at these angles 3p/m/30 and P/m/sin 0 are
equal to zero unless rn = 1, and the P_ are equal to zero unless m = 0. Therefore, for 0 = 0,

oo

/Zo _-" - 1 3

B,(r,¢,l)=--_i@l;j;2(a j, cos_b+b]l sin _b)_--_P/l(1) ,
(19a)

1.  1(1)
]_l rj+ 2 (a/l

B2(r'¢'l) = 4,r sin ¢ - bjl cos _) sin 0 ' (19b)

and

B3(r'¢'l)= o (1). (19c)

For 0 = rr,

Uo(-_L a ,
B 1 (r,¢,-1) = 47r/2_1r/+2(a/1 cos ¢ + b]l sin ¢) _-_p/(-1),

(20a)

Uo@_!1
B2(r,¢,- 1) = 4.lr Zr]+2(a]l_ sin ¢ - 1911 COS ¢)

pl(- 1)

sin 7r
(20b)

and

B3(r'¢'- I)= --4-_EP°_ -(] +. 1)
r/+2 a/oP/°(-1) •

]=1

(20c)

Notice now that a Fourier analysis can create two uncoupled sets of simultaneous equations for

each value of the index m (except m = 0, for which there is only one set). For a given value of rn, each

set will involve all the coefficients having that value of m for which //> m. We are interested only in

the three sets involving the dipole-moment components. The sets involving the coefficients a 11 and

bll are related only to the fundamental sine and cosine amplitudes of the components B 1 and B 2 on

each probe. The set involving alo is related to the dc amplitude of the B 3 components.

20



In a Fourier series,the amplitudeA m of the sin m_b term in the function B(4_) is given by

A m = - B(¢) sin me de .
lr

The amplitude of the cos me term is similar, with sin me replaced by cos me. The dc amplitude is

given by

1 f02_A° 27r B(¢) de.

Therefore, given the measured values of the field components, the Fourier analysis can be per-

formed easily to yield the systems of equations to be solved.

Let r i be the radius of the ith probe location. Let B/(ri,¢,cos 0 i) be the component of the mag-
netic field seen on the/th sensor of the probe at position L Let A o (LL cos 0 i) be the dc amplitude of

the components B](ri,¢,cos Oi). Let A 1 (LLcos 0 i) be the fundamental (i.e., m = 1) cosine amplitude

of the component B/(ri,¢,cos Oi). Let A2(LLcos 0 i) be the fundamental sine amplitude of the com-

ponent B/(ri,¢,cos Oi). These components are given by the following equations:

1 12_A°(i'j'c°s Oi) = _ o Bj(ri'_'c°s Oi) de , (21a)

lfo2 -- B](ri,¢,cos Oi) cos ¢ de,A 1 (/,],cos 0 i) = 7r
(21b)

and

fo r

1 B](ri,dp,cos Oi) sin ¢ de.A2 (i,], cos 0 i) = -_
(21 c)

By use of Equations 18, 19, and 20, these quantities can be related to the various multipole coef-

ficients. For 0 i = 7r/2, the multipole coefficients can be equated as follows:

_j+l 1
A 1 (i, 1,0) = r_i+2 P) (O)a/1

]=1

(22a)

A2(/,2,0) = _ @e/l(0)a]l '
1..] 2

]=1 t

(22b)

o

A2(i,l,O)= S ]+ 1pl(O)b/
ri+2. _ 1 '

]=1 i

(22c)
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and,

For 0 = 0,

and

Al(i'2'0) = - ]=1 r/]7+2 PJ (0)nil '

Ao(i,3,0)--- _. 1/=,4 e,*(°)a:o
:,k

cx_

1 _ 1

Al(i'l'l)=- _ r//+2 _PJ (])aJ 1

1 P-_(1)

A2(i'2'1)= /=,_r[+2 sin0 -ajl'

A2(i,l,1)=- . P] (1)b]1 ,
]=I //1+2 O0

Al(i,2,1 ) = _
1 P](1)•= r/+2 sinO b/1

(22d)

(22e)

(23a)

(23b)

(23c)

(23d)

For 0 = It,

Ao(i,3,1) = _ ]+ 1 pjO(1)a/o .
/=_ r/+2

AI(i, 1,-1)= i=' r/+2 _0P]( - 1)ajl ,

A2(i,2 ,- 1) =
_" 1 P/l(-1)

]=1 r/+2 sin 7r a/1 '

co

1 0 p]l(_ l)bjl ,

A2(i, 1,- 11 = r/+2 30
]=1

(23e)

(24a)

(24b)

(24c)

:--xP m cos 0 = m cot 0 pm cos 0 - p.rn +1 COS 0.
Ou/ 1
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A1(i,2,-1)=- _ 1 P](-1)
i=1 r/+2 sin rr b]l ' (24d)

and

A0(i,3,_ 1)=_ --,_- j + 1 plO( - 1)a/0 , (24e)

°= ,

It will be shown shortly that the sums in Equation 22 contain only terms for which j is odd,

whereas the sums of Equations 23 and 24 contain all values of/. However, the symmetry of the func-

tions pjm can be used to construct equations containing only odd values of/'. To do this, the radii of

the two probes at 0 = 0 and 0 = rr must be identical (let it be rA ). The pfn (x) have the following
properties"

P]m(-x)=(-l)/+mp]m(x)

and

Z m(-x) = (- 1)J+m+'
30 30

Consider now the term

1 iAl(i, 1,1) +A
2

oo

1(i'1 -1)1 = _ r_+2a]lI, -- . -_-_D P/I(I)
j=l

1 D

= Z _]+--'-'-2all _ pI(1)[(- 1) + (- 1)J +2 ]
i=1 r_l

Likewise, all terms of the form

= . +2 DO pl(1)a]l "

l [Ak(i,/',1)+Ax(i,],-1) ]2

can be equated to sums involving only odd values of/.. Notice also that since P_(+ 1) = 0,

oPl(+ 1)/O0 = pjl(+ 1)/sin 0 and DP11(- 1)/D0 =_e]l(_ 1)/sin It. Hence,

Al(i, 1 ,k) = -A2(i,2,k )

and

fork=+ 1.

A 2 (i, 1 ,k) = A 1 (i, 2,k),
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Therefore,someof Equations 23 and 24 are identical. Let us, then, construct three new equa-

tions of the same form as those in Equation 22 (i.e., ] = odd values only) which contain all the in-

formation present in Equations 23 and 24:

1

A I (A ) = -_ [A l (i, 1,1) + A l (i, 1,- 1) -A2(i,2,1) -A2(i,2,- 1)] , (25a)

1

A2(A) = -_ [A2(i, 1,1 ) +A2(i, 1,- 1) + A1(i,2,1) + A 1(i,2 ,- 1)1 , (25b)

and
1

Ao(A) = _ [A0(i,3,1) +A0(i,3,- 1)l .

These quantities can be equated to the multipole coefficients as follows:

(25c)

1 0 p] (1)ail ' (26a)-AI(A) = .4+2 _0
/ odd ¢_I

1 0 p1 (1)bia ' (26b)-A2(A) = _/'+2 30

] odd r)l

and

+ Ao(A ) = (1)a/' o . (26c)

] odd

These equations, along with Equations 22, are the equations that must be solved to determine the di-

pole moment of the source. They can be placed in a more convenient form if the quantities p]rn cos 0

are replaced with their literal form. For example, it is well known that P_](l ) = 1 for all ]'. Hence,
Equation 26c may be rewritten

= _ ]+ 1
Ao(A) a/'o.

]_'aodd r_ +2

Similar results can be derived for the other values of the associated Legendre functions from the gener-

ating function for the Legendre polynomials. Since this function is

F(h,x) = (1 - 2hx + h 2 )-1/2

]=0
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The quantitiesPj] (0) can now be computed as follows. Consider

(1-x2) t/2 3 F(h,x) = _ hi(1 .X2)I] 2 Pj(X)

3

3--; Uxx
j=O

h(1 - x 2 )1/2

(1 - 2hx + h 2 )3/2

From the definition of pjm (x)

Equation 27 becomes

For 0 = rr/2, x = 0, we have

ejm (x ) -- (l - x2 ) m /2 P].(x ) .

hJP](x) =
/=1

h(1 -X2) 1/2

(1 - 2hx + h 2 )3/2

Ypl(o) = h(1 + h2) 3/2 .

j=O

The right-hand side of this equation can now be expanded in a Taylor series.

3 5 h 4 3 5 7 h 6 )3h2 + ___ +
2 2 2 2! 2 2 2 3!h(1 + h 2)-3/2 = h(1

j!! (. l_(J-1)/2

If this is set equal to the left hand side of Equation 28,

and

for/ odd,

p/l(0) = 0, for ] even.

A similar procedure can be followed for 3P](1)/30. The result is

3 p]l(1)__ P](1) _ 1
3--0 sin 0 2 j(j + l ).

The result is

(27)

(28)
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Thesevaluescannow besubstitutedinto Equations22 and 26with the index j replaced by the

index 2k- 1, where k = 1,2, 3,..., _,. The resulting equations are:

Al(i, 1,0) = (_l)k-a 2k(2k-1)!! 1-1)i r2k-+l a2k-l,l '
kml 1

(29a)

_" (_2)x-1 (2k-l) !! 1A2(1'2'0) = (kc - 1)! r2k+l a2k-l'l '
k=l I

(29b)

-AI(A) = _ k(2k- 1)
k=l r2k+l a2k-l'l '

(29c)

(__1) k-1 2k(2k-_),, 1-A2(i, 1,0) = -_c- i r2.k+l b2k-l,1 ' (30a)
k=l l

(__l)X-1 (2k- 1 ,!, 1-Al(i'2'O) = -_ i_. r2k+l b2k-l'l ' (30b)
k--1 l

_ k(2k-1) (30c)
-A2(A) = k=l r2k+l b2k-l'l '

_ (_l)k-_ (2k-l) !! 1-A°(i'3'0) = _-c i)i r2k+l a2k-l'O' (31a)
k=l l

and

A 0(A ) = _.2k+--'---1a2k-1,0 " (31 b)

k=l r?

Assume now that the magnetic field is measured by Np different magnetometer probes. This
means that the number of equations in each of the above sets is fixed. Since each of these equations

contains, in theory, an infinite number of terms, no unique solution is possible. One must therefore

make the assumption that each of these series can be approximated by a finite number of terms. This

seems reasonable, since the sums are power series in r -(2k+1). The higher terms can therefore be ex-

pected to contribute increasingly smaller amounts to the series.

Specifically, in order to obtain a unique solution, the number of unknowns must be less than or

equal to the number of equations. Since the lower order terms are expected to be larger than the

higher order terms, it seems logical to truncate the series rather than to select the various terms to be

included by some procedure.
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Thenumber of equationsoneis ableto construct for agivennumberNp of probes depends upon

how these probes are deployed. There are basically two configurations that can be considered. One is

formed by placing all the sensors in the horizontal plane. In this case (known as the + 1 configuration),

there are 2Np equations for the X- and Y-axis moments and Np equations for the Z-axis moments. The
other configuration (known as the 0 configuration) employs two of the sensors above and below the

source (i.e., along the Z axis). Here, there are 2Np - 3 equations for the X- and Y-axis moments and

Np - 1 equations for the Z-axis moments. No matter which configuration is used, each equation in a
set is of the form

M

Yi = E ci/qj ' (32)

j=l

where Yi is a Fourier coefficient, ci] is a known coefficient, and qj is an unknown quantity propor-

tional to the ith multipole moment coefficient.

Solution of the Near-Field Equations

The problem now is to determine the set of coefficients that best satisfy Equations 32. The cri-

terion for "best" that will be used here is a least squares one; that is, the multipole coefficients will be

chosen to minimize the sum of the squares of the deviations of the calculated Fourier coefficients

from the "measured" ones.

It is now necessary to define several quantities that will be used in the following discussion. Let

f(y) be the probability that if one observes a quantity, that observation will yield the value y for that

quantity. Usually, the values ofy form a continuous set. Then f(y) is defined so that f(y)dy is the

probability that an observation lies in a range dy centered at y. The expectation value of a function

q(y) is defined as

< q > = fq(y)f@) dy,

where the integration extends over all the possible values ofy (the integration becomes a summation if

the allowed values of y are discrete). The population mean, or true value Y of y, is defined as

Y=<y>

for a very large number of observations.

The variance of a quantity is defined as the average of the squares of the deviations from the true

value. Hence,

var y = < (y - y)2 >.

The covariance of two quantities y and z is defined as
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cov (y,z) = @ - Y)(z - z)>

t"
= _ (y - Y)(z- Z)f(y,z) dy dz ,

d

where f(y,z)dy dz is the probability that tiae observations ofy and z lie simultaneously in the range dy
about y and dz about z.

In most cases, the probability function f(y) is not known. Also, the number of measurements

available is usually small. Therefore one must estimate the true values of the measured quantities by

some method. An unbiased estimate is one whose expectation value is the true value of the quantity.

Hence, the population mean can be estimated as an average value given by

N

Y N Yi"
i=1

Also, the standard deviation of an observation can be estimated from the deviations from the mean v i

= ,-r- g %-y
i=1

N-1
- var y.

N

Hence,

(_i=1 vzi) =(N-1)vary= (N-1)(I 2 .

One therefore estimates the variance o 2 of the observations by the quantity S 2 given by

8 2 =

N

Cv_- y)2
i=1

N-1

The variance of the mean is given by
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Hence_

S2(T) =

N

i=1

N(N - 1 )

will provide an estimate of the variance of the mean.

The above discussion can now be extended to more than one variable. Let Yi denote the average

of a large number of measurements of a variable. Let o i be the standard deviation associated with Yi"

A relationship of the form

M

Yi = L ci/qj
(33)

j=l

is assumed to exist between the Yi and the unknown coefficients qj. The best q/values in a least

squares sense are needed, along with their associated variances. Assume that there are N known Yi" Let

us call the right-hand side of Equation 33 the theoretical expression for Yi and denote its value (for a

given set of qj) by cr

The least squares postulate states that the best coefficients minimize the mean of the squares of

deviations from the means Yi" In symbols,

N

_ (Yi - Ci )2

i=1

should be minimized. However, the scatter of observations about each of the N points is different

(o 2 being a measure of this scatter). Therefore, the deviations should be weighted by dividing by o 2 .

The least squares principle then makes

(Yi-Ci)2 1
i=1 02 O2 i=1 wi(Yi Ci)2

a minimum, with w i = o 2/02 and o 2 = a constant.

(34)

Differentiating Equation 34 with respect to the qi and equating the results to zero yields the M

so-called normal equations of the system. These can easily be shown to be

N

wiYiCik -

i=1
_ i_ WiCi]Cikl q] _ 0 "j=l=1

(35)

These equations can be written in standard matrix notation as
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M

D_ = E CkiqJ '
]=1

where the substitutions are obvious from the previous discussion.

version of the matrix G. If this inverse is ¢,

(36)

One method of solution is direct in-

M M M

k=l k=l ]=1

M

]=1

= qr "

Hence, the equations are solved, and the quantities q], given by

M N

k=l i=l

provide unbiased estimates of the true

The variance of these quantities is

N

i=1

coefficients _j.

easily determined, since they are linear functions of the Yi"

(Oq]/Oyi)202

w,c,kc,
k=l r 1 =1

M M

k=l r=l

(37)

M •

k=l
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The expressionfor a 2 can now be estimated from the residuals as follows: Consider

Since

we can write

+;- _-<q)

M

Vi = Yi - _ cijq] "

]=1

= var v i

Now

and

M

= var Yi - 2
j=l

WiCi] COV (yi,q]) +

var Yi = 02 ,

= Ckiwe, iO,- Y)
=1 r=l

M M

]=1 k=l

w2i ci/Cix cov (qj'qx ) •

MN \

p=l s=l /

Now

Hence,

M M N N

V
i=1 p=l r=l s=l

@, - v,)% - vs)) =_,_q.

but

cov (qj,qx) =

M M N

i=1 r=l s=l

,4, _ C W 2 --2
kiV'frCsr sk s °s

W s = 0 2/0 2
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Therefore,

Also,

Hence,

Now

cov (q]'qk ) =

M M N

i=1 r=l 3=1

M

= _ dPkiS]k _72

i=1

M N

k=l 3=1

M

O 2

k=l

M M

varvi=°2i + _ _Ci]CikOjk a2-
k=l j=l

M M

=17} - _ _ q3jkCifCik02 •

]=1 k=l

M M

2 _ _ cif_)jkCik O2
]=1 k=l

WiP = W i var Pi

=1 i=1

= w_,} - % we%ce
i=1 ]=1 k=l i=1

M

=No2 - _ 6jk a2

j=l

= (N- M)o "2 .
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Hence, 02 can be estimated as the quantity S 2 given by

N

$2 _ i=1

N-M

Also, the variance of q! is estimated as

S 2 (q]) = c_/]s2

_)]] N

i=I

(38)

A Statistical Test

Thus far it has tacitly been assumed that any errors in the Yi were due to the net effect of a num-
ber of small disturbances. In this case, the errors will be distributed about the population mean accord-

ing to the so-called "normal distribution" of statistical theory. This means that the probability of ob-

taining a value Yi will be proportional to

expL- go;-] J '''

where I1/is the population mean.

Ifx is a linear function of the Yi (e.g., a multipole coefficient), X the "true" value of this func-

tion (corresponding to the Y/), and S(x) the estimated standard deviation ofx based on the estimate

N

S 2 = WiVi/_

i=1

of 02 , then it can be shown that the variable

t = (x - X)/S(x) (39)

is distributed according to the function

This is often referred to as Student's distribution, and tables of the variable t can be used to test the

significance of the departure from an assumed true value. In particular, it can be used to construct con-

fidence intervals for the value x. For example, for a given number of degrees of freedom 9, the prob-

ability that ]t l _> ½ can be determined from various tables. Let this probability be a. Therefore, it can
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be saidthat the probability that the deviationfrom the population meanis greaterthan tas(x) in mag-

nitude is a for a given experiment.

This discussion has provided a method by which the various multipole coefficients and their

associated uncertainties can be estimated. This method is based upon one basic assumption: The in-

finite multipole expansion for the Fourier coefficients can be truncated without introducing signifi-

cant errors. The logical question to ask now is what happens if the fundamental assumption is invalid?

That is, what happens in the case when one or more of the multipole coefficients, which were assumed

negligible, actually contributes a significant amount to the Fourier coefficients? The answer is that

the q/will no longer be good estimates of the actual multipole moment coefficients n/. This is appar-

ent from the actual expression for the Yi:

Yi = E cijnj

]=1

m oo

=Ecijnj+ciinj
]=1 j=rn + 1

M

= E cijnj + 6i "

j=l

The q! can be calculated from Equation 37:

qf = _ (gfk _ }_)iCik (Mr_ Cirnr -_- _i)k=li=1 =1

M N

=tTj+ E E WiCik_gfk_ i

k=l i=1

= n/ + e] .

If the basic assumption is untrue, systematic errors can be expected in the qj which cannot be

eliminated by the above analysis. One can expect the errors e/to change as the order of fit M of the

system is changed. Specifically, e! can be written as a sum over the multipole coefficients from M + 1
to _. Hence, as the value of M increases, more of the coefficients are eliminated, and the error might

be expected to decrease somewhat. However, this behavior is not definite, and since the error e/can-

not be separated from the rnj, another procedure must be found by which the accuracy of the @ can
be estimated.
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CHAPTER IV

ERROR ANALYSIS

I ntroduction

Consider, for a moment, the currents and magnetic material within the spacecraft. The currents

are macroscopic currents flowing through coils which permeate the source. Given currents of this type,

a magnetization density which will produce an identical magnetic field outside the source can, in

principle, be determined. This magnetization density will not vary appreciably over small distances.

This is also the case with the magnetization of the magnetic material. The spacecraft source can there-

fore be divided into macroscopic subvolumes whose magnetizations are fairly uniform. Each of these

subvolumes can be considered to contain a point dipole source whose magnitude and direction are

determined by the average magnetization density in that subvolume. By adjusting the size of each sub-

volume, the magnetic field of this ensemble of point dipoles can be made to coincide with that of the

actual spacecraft to any desired degree of accuracy.

Actually, a procedure such as this would be impossible; but the point is clear: The spacecraft can

be represented by a finite number of point dipole sources, and its field can be written as the sum over

a finite number of these point dipole fields. It would, therefore, seem that the determination of the

dipole moment of a point dipole source is of fundamental importance, and that the errors that arise in

this case are definitely related to those of the general case.

Let re(k) be the moment of a point dipole located at the point P specified by the position vector

k. Let the field produced by this dipole be measured by Np probes in either the + 1 or the 0 configura-

tion, as in Figure 2. The magnetization density M(r) which describes this source is representable by

M(r) = m(k)_i(r - k).

This magnetization will give rise to the multipole coefficients of the system as given in Equations 16.

Upon integration by parts, it will be found that integrals of the form

/(r)V " g(r)dV

volume

may be written as

f g(r) • Vf(r) d V.

volume
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Figure 2--Probe configurations for typical test situations (Sp = 2k/r 1 and rlj = r I/rj).
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Hence, aim (k) is

aim (k) = (2 - 6]o ) (]- m)! fm(k)5(r- k)" V rj pjm (cos O) cos m_b d3r
(j+m)!J

= (2 - 6/o) (j-(/+m)!m)! m(k) "VrjP m (cos O) sin mOI_=k (40)

Similarly, for bjm (k),

= 2 (j- m)! re(k) • Vr/'P. m (cos O) cos m_ I (41)bjm(k)
(j+m)! I r=k

The only coefficients of interest in this case are those for which m = 0, 1 and ] = odd. Therefore,

define

nj(1 ,k) = a2/_ 1,1(k) , (42a)

nj(2,k) = b2]_ 1,1 (k), (42b)

and

which one can write as

nj(3,k) = a2/_ 1,0(k) , (42c)

n/(s,k) = m(k)* hj(s,k).

As before, the actual Fourier coefficients for the sth axis can be written as

Yi(s,k) =

]=1

ci/(s)n](s,k) •

Now, the least squares coefficients qr(s,k) can be determined as before from Equation 37"

M(s) N(s)

qr (s'k) = _ CPrP (S)

p=l i = 1

Cip (S)W i (s)y i (S, k)

M(s) N(s)

]=1 p=l i=1

_rp (S)Cip (s)wi(s)ci/(s)_(s'k)

= nr(s,k ) +

M(s) N(s)

j=M(s)+I p=l i=l

_)rp (S)Wi (S)Cip (S)Cij (S)tlj (S, k)
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= nr(s,k) + m(k) • $rp (s)wi(s)Cip (s)cii(s)h/(s'k)

=M($)+1 p=l "=

= nr(s,k) + m(k) • Qr(S,k) .

Hence, the error in the coefficient qr(s,k) is represented by the term m(k) • Qr(S,k).

(43)

Consider now an assembly of point dipoles. The results can be written immediately from a

summation over all vectors k. Therefore, the least squares coefficient qr(S) is given by

qr(S) = _ qr (s'k)
k

= _. nr(s,k)+ _ m(k)* Qr(S,k)

k k

where

= nr(S) + _ m(k) • Qr(S,k)
k

= nr(S ) + er(S) ,

if m(k) is discrete, or

er(S) = _ m(k) • Qr(S,k),
k

f
er(S) =1 m(k) • Qr(S,k) d3k ,

if m(k) is a continuous function of the vector k. Now if one could say

qr(S) = nr(S ) + _ ,

where the magnitude of 6 were known, one would know the limits within which nr(S) must lie.

Consider therefore ler(s) lsuch that

=Ifm  ' I

.< f[m(k).Qr (s,k) d 3 k
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_< f m(k)l Qr(S,k)[d3k

<. Qm(s,k) I m(k) d3k,
,.1

where Qrm (s,k) is the maximum value of the magnitude of Qr(S,k) for any vector k (within the confines

of the source). Similarly, for discrete values of m(k)

er(S) m(k)l.
k

Now, the vector Qr(S,k) and the quantity Qm (s,k) are independent of the source in question.

Assume for now that they can be determined by some procedure and hence are known. The error is

related to the particular source through the terms

n(k) d 3 k

This quantity represents the magnitude of the maximum possible dipole moment of that particular

source. It is, in general, impossible to calculate. Therefore, some method of estimation must be

devised.

The magnitude of this term is dependent upon the magnetic components within the source. If

they are weak, the term will be small. If they are strong, the term will be large. Such is the case with

the magnetic field of the object. If the components are weak, the field will be small; if they are strong,

the field will be large, independent of what the dipole moment is. Also, in the case where

fm(k) d 3 k "= f m(k) [d 3k,

the dipole moment will usually be large compared with the other moments. Hence, as a fairly good

approximation,

fm(k)_k [1C-_+B2pp)2+B2p] 1/2s Be '
= r 3 = (44)

where Bjpp is the maximum field excursion seen on the ]th sensor of the most distant probe during a

rotation, B/p is the maximum value of the field seen on the/th sensor of this probe, and rf is the radius
of this probe. In the cases where the dipole moment is small, the right-hand side of Equation 44 will

still be a quantity which will give a measure of the magnitude of the field of the source. The assump-

tion will therefore be made that

f m(k) d 3 k = B e
(45)
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in all cases.This assumptionis not really critical aslong asthe estimateof er(S) is not so large that it

is useless, or so small that it is unrealistic. Still, it is an assumption whose validity must be tested fur-

ther. The discussion of this assumption will be deferred until later.

Single-Dipole Error Functions

The form of Qe(s,k) must now be examined. Evaluate the quantities n/(s,k); using Equations 40,
41, and 42, and the Cartesian components of the operator V in the spherical polar coordinate system,

write the nj as

ni(1,k) = ml [Sl/(k ) cos 2 Ck + S2i(k) sin2 Ck]

+ m 2 [Sl/(k) - S2/(k)]

and

cos Ck sin Ck + maSa/(k) cos Ck ,

nj(2,k) = m 1 [S1/(k ) - S2/(k)] cos Ck sin Ck

+ m2 [Sl/(k) sin2 Ck + S2/(k) c°s2 Ck] + m3S3j(k) sin Ck ,

n/(3,k) = mlS4/(k ) cos Ck + m2S4l(k) sin Ck + m3Ss/(k),

where m/= the ]th component of m(k) and

k2]-2 IsSl](k) - - in Ok P_/_l(cos Ok) +
]

F l,_t,cos0 )1
S2j(k)=/(2j-1)u ' '

k2/-2 [S3/(k) - - cos Ok P1]_l(COS Ok)
]

cos2]_lok 303 plj_l(co s Ok)]

sin Ok -1
p1] 1(cos Ok )[2j-1 00 - A

and

S4](k) = k 2]-2 [(2] - 1) sin Ok P2j_I(COS Ok) - COS Ok P1/_I(COS Ok) ] ,

Ssj(k) = k 2]-2 [(2] - 1) cos Ok P2j_l(COS Ok) + sin Ok P1/_l(COS Ok) ] .

The quantity er](S ) is now defined as

M(s) N(s)

p=l i=1

Crp(s)wi(s)% (s)%(s) .
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The quantitiesm(k) • Qr(S,k) canthen bewritten as

m(k) ° Qr(1,k) = m 1 [Elr(1,k) cos 2 _bk + EEr(1 ,k) sin 2 _bk]

+ mE[Elr(1,k) -EEr(1,k)] cos _bk sin _bk + maE3r(1,k ) cos _bk ,(46a)

m(k) • Qr(2,k) = m I [Elr(2,k ) -EEr(2,k)] cos q_k sin q_k

+ m 2 [Elr(2,k) sin E _bk + EEr(2,k) cos E _bk ] + m3E3r(2,k) sin _bk , (46b)

and

where

m(k) ° Qr(3,k) = mlE4r(3,k ) cos _k + m2E4r(3'k) sin Ck + m3Esr(3,k) •

Eir(S'k)= _ er/(S)Sq(k)"

]--M(s)+ 1

(46c)

Examination of Equations 29 and 30 reveals that the near-field equations for the x and y axes are

identical in form. Hence, if the weights w] in Equation 34 are the same for each axis (which they will

be), er/(1 ) = er/(2) for all r and/'. Also, since only the errors in the dipole components are of interest,

all the Ejr(S, k) for which r 4:1 can be neglected. The dipole errors re(k) • Q1 (s, k) can now be written
in terms of only five error functions. These functions are defined as follows"

and

E/(k) =E/z(l,k )=E/1(2,k), for j= 1, 2, 3;

for/" =4, 5 .E/(k) = E/l(3,k),

The value of the function Q1 (s, k) may be determined for any values of k and Ok by analyzing

suitably chosen single-dipole sources. For example, let the source consist of dipole whose moment is

m (components ml, mE, and rn 3 ) located at the point k = (k, Ok ; _bk = 0). Three determinations of the

least squares dipole-moment components (for three different sets of the m I , rn2, and m 3 ) on each axis

are necessary for a complete definition of the vector Q1 (s, k) for a particular probe configuration and

least squares fit. Hence, if rn 1 = 0, m 2 = m 3 = 0, Equations 43 and 46 give

ql(1) = m I + mlEl(k) ,

and

Similarly, if m 2 4= 0, m 1 = m 2 = 0,

ql(2) = 0,

ql (3) = m 1E4(k )

ql(1) = q1(3) = 0

41



and

Also, for m 3 4: 0, m 1 = m 2 = 0,

q1(2) = rn 2 + m2E2(k) •

ql(1) = rn3E3(k ) ,

q1(2) = 0,

and

ql(3) = m 3 + rn3E5(k) .

Hence, the value of Ql(S, k) is known for the vector k. Since the Ck-dependence of the function is

known, Q1 (s, k) is really known on a circle of latitude specified by the angle 0k on a sphere whose

radius is k. In principle, therefore, the vector Q1 (s, k) can be completely determined if this procedure

is repeated for all values of k.

Having done this, one must compute

Ql(s,k)l 2 = Ql(S,k) • Ql(S,k).

from Equations 46"

{ [El(k)] 2 + [E3(k)]2 } COS2 _)k -t- [E2(k)12 sin 2 q_k ,

IQl(2,k)[ 2 = { [El(k)]2 + [E3(k)]2 } sin 2 _bx + [E2(k)]2 cos 2 _bk ,

IQl(3,k)l 2 = [E4(k)] 2 + [Es(k)l 2

Clearly,

[QM11(1,k)]2 _ {[El(k)] 2 + [E3(k)]2}max

[Q_I (2,k)] 2 _ { [El(k)] 2 + [E3(k)]2}max

[QM1(3,k)]2 _ { [E4(k)] 2 + [Es(k)]2}max

+ [E2(k) ] 2 = Q1max

+ [E2(k) ]2 = Q1max

= Q3 .

Therefore, the possible systematic errors lel(s) l in the dipole components can be estimated from

the expression in Equation 45 for f lm(k)l d 3 k. Hence, for an estimate of lel (s) I ,

lel(1)l = e1(2)1= Ql(k)Be (47a)

and

[e i (3) I = Q3 (k)B e (47b)
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In summary, then, the procedurefor dipole-momentdeterminationshouldproceedasfollows:
SpecifyagivennumberNp of magnetometer probes deployed in either the zero or the + 1 configura-
tion about the magnetic source. Then, rotate the source through 360 deg to obtain the three compo-

nents of the magnetic field at each probe location. Now, Equations 21 will give the appropriate

Fourier coefficients. If the zero configuration is used, the values of A 1(/1), A2(A), and Ao(A) must be

calculated from Equations 25. The next step is to solve for the dipole-moment components axis by

axis. For each axis, first determine the order of fit M(s) desired, and then set up the appropriate near-

field equations to be solved (.Equations 29, 30, and 31).

The least squares analysis now proceeds with the formation for each axis of the matrices D and G,

as defined in Equations 35 and 36. For the weights w i, 1/02 must be used, where a i is the uncertainty

in the measurement of the values of the magnetic field used to calculate the Fourier coefficient Yi'*

The next step is to invert the G matrix and determine the least squares dipole-moment coefficient

ql(s) from Equation 37, and its associated uncertainty S 2 [ql (s)] from Equation 38. Confidence limits

on the value of q l (s) can be determined from the table of t-values with N(s) -M(s) degrees of freedom

[N(s) is the number of equations] and Equation 39. The confidence limits will be given by +-taS[ql(s)],

where a is the probability of a value of t greater than ta .

Now the possible systematic error in the answer must be determined. First, estimate the maxi-

mum moment of the source by using Equation 45. Then, determine the value of QS(k) appropriate to

the particular probe configuration used, the sample volume, and the order of fit for the sth axis. This

can be done by the rather tedious procedure presented in the last section. Once this is done, the error

can be estimated from Equations 47a or 47b.

Obviously, the procedure described would be very tedious if done by hand. However, on a com-

puter the task is easily accomplished. Let us now turn to the task of evaluating the procedure.

*These can be taken to be the calibration accuracy of the probe.
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CHAPTER V

EVALUATION

Quantitative Tests

Thus far, the theory has been developed qualitatively. The equations and procedures have been

developed without consideration of any experimental limitations that may be present. Also, the fun-

damental assumption upon which the method is based has been justified by a more or less intuitive

argument. There is no way to determine how often this assumption can be expected to hold true.

Therefore, it is necessary that some procedure be devised to test this method in order to determine its

feasibility as a technique for determination of the dipole moment of a spacecraft.

The simplest way to do this is to use the near-field method to determine the magnetic moments

of sources whose actual moments are already known. If the sources selected for analysis are numerous

and varied, general conclusions can be drawn as to the validity of this technique. Specifically, the test-

ing program is aimed at answering these questions: Can one expect to determine a reasonably accurate

value for the dipole moment of an object by this procedure, and is the uncertainty in this number

small enough to be useful?

In view of the complexity of the calculations involved in such an analysis, the test program was

carried out entirely on a computer. That is, a program was written which would generate magnetic

data for a given set of arbitrarily located point dipoles and then analyze these data by the method pre-

sented above (see Appendix B). In this way, a large number of different cases could be analyzed in a

short time. These cases would also be free from any experimental error which could be confused with

the systematic errors associated with the technique itself. To determine the sensitivity of the technique

to the experimental errors, provisions were also made in the program to introduce errors into the data

which would simulate errors encountered in an actual test.

A modified version of this program was used to determine the error functions E/(k) on spheres of

different radii. Hence, the systematic errors could be estimated for each test case by the foregoing

procedure.

Test Procedure

In these tests, it was assumed that the maximum number of magnetometers available would be

four. The major parameters of interest in a test were the ratio of the source diameter to the radius to

the closest sensor, and the order of fit of the near-field equations. The parameters varied from test to

test were the radii of the various probes and the configurations of these probes.
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Thetestswere conductedin threesections. The first sectionwasconcernedwith the determina-
tion of the momentof a singlepoint dipole locatedsomewherewithin a sphereof known diameter.
Thesetestswerefairly extensiveand the resultsusedto compute the error functions Ei(k ) for a given
probe configuration, order of fit, and sphere diameter. Also, the order of magnitude of each of the

lower order multipole coefficients in the near-field expansion could be estimated from these results.

This is helpful in attempts to estimate the magnitudes of the coefficients of an aggregate of dipoles.

The results were also helpful in determining the effects of machine error in the computations and the
behavior of the least squares coefficients as a function of the order of fit.

The second section of the tests was concerned with multiple magnet sources. Naturally, these

tests could not be as extensive as the ones above, because of the many possibilities in the construction

of the sources. Sources containing up to 28 dipoles were analyzed. For a given probe configuration,

the moments, and their variances, of each of the sources were determined as a function of the order of
fit.

In the third section, the same sources as in the second section were analyzed. In this case, how-

ever, the data were adjusted to simulate real data, and the effect on the calculations was studied.

In an experimental environment, there will be a minimum observable change in the magnetic field

because of the limitations of the instrumentation. This threshold value will not be constant but will be

dependent upon the values of the magnetic field seen on the sensors.* Real data will therefore be sub-

ject to a minimum uncertainty. Also, the magnetometers have a certain calibration accuracy that must

be taken into consideration. Errors in the data within these limits were also introduced.

Obviously, all possible errors could not be simulated. The reason for these tests was to determine

whether or not errors of the type described previously are detectable from observations of the calcu-

lated values of the multipole moments and whether or not limits could be placed on these moments
when this type of error was present.

Each source was tested using from one to four probes in both the zero and the + 1 configuration.

This procedure permitted each of the various probe configurations to be evaluated.

*The magnitude of the fields observed will determine the range setting of the magnetometers. The higher the range, the greater the
threshold value will be.
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CHAPTER Vl

R ESU LTS

Accuracy

The tests show that this method of analysis is indeed effective. They also allow general pre-

dictions to be made about its capabilities in a given situation. Of primary interest is the accuracy

of this technique.

The accuracy of this technique (defined here as the ability to predict the correct values for

the dipole-moment coefficients) is a function of several variables. These variables can be divided

into two classes: (I) Variables associated with the magnetic source itself and over which one has no

control (e.gl, strength and location of the magnetic components); and (II) variables associated with

the technique (e.g., number and location of the probes and the order of fit to the near-field equa-

tions). The variation in accuracy produced by the Class I variables is the most significant and,

unfortunately, the most difficult to deal with. That produced by the Class II variables is for the

most part predictable and is usually much smaller than the variation due to Class I parameters.

Therefore let us consider Class II first.

The Class II variables can in turn be divided into two subclasses: (1) physical variables such

as the number of probes and the configuration of these probes, and (2) the order of fit. There

appears to be a complicated interrelationship between the accuracy and the physical variables.

Studies of the error functions E/(k) for each probe arrangement possible with from one to four
probes and for several different sets of probe radii show that there is a definite change in accuracy

if one of the parameters is changed; however, this change is usually small. The numbers Ql(k) and

Q3(k) are a measure of the maximum possible error in the measurement of a magnet located on the

surface of a sphere of radius k (see Figure 2). The characteristics of different probe configurations

are shown in Table 1; corresponding values of Q1 and Q3 are shown in Tables 2 and 3 for different

size parameters Sp (defined as the source diameter divided by the radius to the closest probe) and
order of fit.

These results permit one to compare the various probe configurations. In general, a given num-

ber of probes in the + 1 configuration are more accurate than the same number of probes in the

zero configuration (for a certain sample size and order of fit). In addition, the probes provide more

information* about the magnetic field of the source, and this information permits calculations to be

carried out to higher order.

*That is, the number of equations for a given axis is larger than for the zero configuration.
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Table 1-Selected probe configurations.

Configuration

1
2
3
4
5
6
7
8
9

10

Type

+1
+1
+1
+1
+1

Number of
Probes

4
4
4
3
3

rl 1

Probe Radii (r U

r12

2/3

1/2

5/6

2/3

1/2

= rl/r/)

rl 3

1/2

1/3

5/7

1/2

1/3

I'14

2/5

1/4

5/8

+1

0

0

0

0

2

4

4

4

3

2/3

2/3

1/2

2/3

1

1

1

1/2

1

1

1

1/2

For probes in the +1 configuration, it appears that the accuracy decreases somewhat as the

probe spacing decreases. However, this effect is important only for very close spacing, and in

general the variation of accuracy is unpredictable. This means that one can assume that the

probe spacing is not critical.

The order of magnitude of the change in accuracy as a function of the order of fit is also

observable in Tables 2 and 3. This change is obviously more drastic than the other changes and

is definitely predictable. The tables show that as the order of fit is increased, the accuracy im-

proves. The apparent discrepancy observable in the higher orders of fit is believed due to

machine errors in the computations. This point will be discussed more fully later.

The same behavior was observed when multiple dipole sources were tested.* That is, the

absolute accuracy remained about the same for all probe configurations tested with a particular

sample and a given order of fit and got increasingly better as the order of fit was increased.

Again, the discrepancy in accuracy was noted as the order of fit became fairly high, and as be-

fore, it was assumed to be due to machine error.

The variation as a function of the size parameter Sp is also easy to characterize. As the
size of the sample is increased, the accuracy decreases. This is due to the increase in the magni-

tude of the multipole moment coefficients as the magnetic material is displaced further from the

center of the object. This type of variation is really tied in with the Class I variables, which

are considered later.

The accuracy as a function of the source parameters is much more difficult to analyze.

This accuracy is dependent on the values of the various multipole moment coefficients of the

*The data used in these analyses were considered "perfect".
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Table 2-Values of Q1 for selected probe configurations.

'O

Size

Parameter Sp

0.4

0.6

0.8

Configuration

4

5

6

7

8

9

l0

1

2

3

4

5

6

7

8

9

10

1

2

3

4

5

6

7

8

1

1 0.13901

2 0.12232

3 0.12824

0.13944

0.14551

0.14089

0.081034

0.087116

0.13830

0.088199

0.29908

0.26348

0.27632

0.29999

0.31291

0.3031

0.24835

0.26437

0.29747

0.26738

0.52035

0.45609

0.47795

0.52196

0.54547

0.52750

0.63746

0.67300

Order of Fit

2

0.0039488

0.0039475

0.0045939

0.0040254

0.0037651

0.00419

0.018571

0.019120

0.0015225

0.019279

0.01812

0.018058

0.020997

0.018466

0.017250

0.0192

0.097130

0.099920

0.0067129

0.10074

0.054118

0.054393

0.063327

0.055190

0.051762

0.057537

0.32796

0.33698

0.00003915

0.00006992

0.00009143

0.00003694

0.00007186

0.00001967

0.00039829

0.00036852

0.00011698

0.00040640

0.00071926

0.00092398

0.00038315

0.00073907

0.00020491

0.0045043

0.0041643

0.0012293

0.0020232

0.0037083

10.0048125

0.0019150

0.0038109

0.0010723

0.025616

0.023657

4

0.00001025

0.00000291

0.00001109

0.00001092

0.00000317

0.00000672

0.00000837

0.00000350

0.00003516

0.00001203

0.00003790

0.00003621

0.00001258

0.00003703

0.00018160

0.00001845

0.00030860

0.00010345

0.00033310

0.00031762

0.00010783

0.00039433

0.0017447

0.00000349

0.00000259

0.00000595

0.00000445

0.00000402

0.00000569

0.00000423

0.00001026

0.00000737

0.00000662

0.00001208

0.00000640

0.00002863

0.00001466

0.00000988

6

0.00000995

0.00000574

0.00004668

0.0000173

0.00000950

0.00009265

0.00002730

0.00001412

0.00017379

0.00000837

0.00000175

0.00056881

0.00001552

0.00000270

0.0011069

0.00002628

0.00000369

0.0020098



o_ Table2 (continued)-Valuesof Q1 for selected probe configurations.

Size

Parameter Sp

0.8

1.0

1.2

1.4

Configuration

9

10

1

2

3

4

5

6

7

8

9

10

1

2

3

4

5

6

7

8

9

10

1

2

3

4

5

6

0.51801

0.68006

0.85543

0.74244

0.77575

0.85814

0.89990

0.8676

1.5286

1.6045

0.85274

1.6203

1.4622

1.2464

1.2959

1.4670

1.5474

1.4842

3.7073

3.8748

1.4608

3.9110

2.7402

2.2770

2.3508

2.7500

2

0.022397

0.33967

0.14429

0.14615

0.17022

0.14723

0.13863

0.15383

0.91619

0.94099

0.06508

0.94833

0.37326

0.38442

0.44705

0.38128

0.36242

0.40011

2.4203

2.4811

0.18972

2.4999 _

1.03678

1.0917

1.26175

1.0603

Order of Fit

3

0.0063067

0.0079381

0.015732

0.020620

0.0073447

0.016169

0.00373

0.10295

0.094992

0.023189

0.027578

0.062195

0.082707

0.024838

0.063934

0.010361

0.34892

0.32174

0.079101

0.093961

0.25550

0.33878

0.08050

0.00016617

0.0021425

0.00068123

0.0023200

0.00220801

0.00071035

0.002561

0.010326

0.00088478

0.013383

0.0039409

0.014533

0.013825

0.0041143

0.012653

0.046700

0.0039053

0.085541

0.022826

0.092237

0.08859

0.00009264

0.00001328

0.00027406

0.00009856

0.00001591

0.00080394

0.00007129

0.0025463

0.00084557

0.00005070

0.0075137

0.0054193

0.025252

0.0078824

0.00004305

0.00002001

0.00035247

0.00009329

0.00002966

0.0011433

2.9211

2.7839

1.0220

1.1182

0.26269

0.031555

0.02386 0.00033284

0.00099240

0.00006971

0.068796

0.0004290

0.00000468

0.0036208

0.00007073

0.00000570

0.0062675

0.00022100

0.00000866

0.11577



Table2 (concluded)-Valuesof Q1 for selected probe configurations.

Size

Parameter sp

1.4

Configuration

7

8

9

10

10.033

10.456

2.7448

10.5509

Order of Fit

6.8975

7.0636

0.58509

7.1163

1.1750

1.0833

0.27260

4

0.056014

0.20573

0.015633

7



_ Table 3-Values of Q3 for selected probe configurations.

Size

Parameter Sp

0.4

0.6

0.8

Configuration

l

2

3

4

5

6

7

8

9

10

1

2

3

4

5

6

7

8

9

10

1

2

3

4

5

6

7

8

9

I0

Order of Fit

0.1566

0.16362

0.14484

0.1573

0.16386

0.15876

0.21510

0.21749

0.13605

0.21795

0.32077

0.33434

0.29842

0.56441

0.33481

0.3 2494

0.56441

0.57038

0.27673

0.57154

0.50401

0.52386

0.47259

0.50548

0.52457

0.51036

1.2568

1.2693

0.43033

1.2718

0.0051880

0.0030402

0.00728¢1

0.0054296

0.0032509

0.018625

0.01904

0.0034622

0.023574

0.014003

0.032721

0.097380

0.14964

0.099480

0.024655

0.016863

0.064527

0.039034

0.088139

0.67424

0.041678

0.32968

0.33647

0.05086

0.00008308

0.00002303

0.00025152

0.00084925

0.00024306

0.0024838

0.0040985

0.0012096

0.011496

Size

Parameter Sp

1.0

1.2

1.4

Configuration

1

2

3

4

5

6

7

8

9

l0

1

2

3

4

5

6

7

8

9

10

1

2

3

4

5

6

7

8

9

10

Order of Fit

0.83068

0.87703

0.74015

0.83341

0.87833

0.84315

2.6890

2.7140

0.73895

2.7192

1.5463

1.6400

1.3518

1.5515

1.6425

1.5704

6.0039

6.0565

1.3848

6.0676

3.0718

3.2770

2.6112

3.0825

3.2820

3.1219

15.396

15.525

2.7694

15.553

0.14346

0.081955

0.21665

0.15065

0.087407

0.91858

0.93646

0.11821

0.40008

0.21115

0.62490

0.42064

0.22673

2.4179

2.4623

0.23419

1.1283

0.57289

1.8461

1.1886

0.61591

6.8312

6.9503

0.41841

0.012987

0.0039768

0.046100

0.051806

0.012235

0.20518

0.20238

0.044889

0.89865



source under observation; hence, it varies greatly from source to source. As mentioned above, when

the size of the source is increased, the error usually increases; however, when sources of the same size

are examined, predictions about the absolute accuracy of the results are in general difficult to make.

In fact, unless one has more information about the source than its physical size, absolute predictions

are impossible. That is, it is impossible to say, for a given set of physical parameters, order of fit, and

source dimensions, that the dipole moment of any source can be calculated to within so many mag-

netic moment units. This is because the magnitude of the error is dependent upon the strengths of the

magnetic components of the source: The more "magnetic" the source, the larger the error will be.

The tests do show, however, a limit (in magnetic moment units) on the magnitude of the error for

sources of a particular size and magnetization as a function of the order of fit.

Table 4 shows the maximum errors observed as a function of the order of fit and sample size for

54 samples containing from 9 to 28 magnetic components (most of which were located at the outer

edge of the source). These numbers were obtained with the probes in configuration number 1 (see

Table 1). Since the horizontal and vertical moment calculations are inherently dissimilar, separate

entries are made for each. The value of the actual dipole moment, M, is shown to the right of the

observed error 0.

This table is not meant to give any general accuracy predictions. However, the magnitudes of the

magnetic components in the sources are much larger than are usually found in a spacecraft; hence, the

errors in this table are expected to be larger than those actually seen. If some other source were tested,

larger errors could very conceivably be obtained.

Let us now turn to the question of whether or not one can estimate the accuracy of a given cal-

culation: first, for ideal data (i.e., data for a perfect system) and second, for real data that is subject

to errors of some type.

Effect and Estimation of Errors

In the tests described above, errors in the calculations are either machine errors or systematic

errors. As one can see from Tables 2 and 3, machine error becomes apparent only at the higher orders

of fit; this error is due to the rounding off of the numbers calculated by the computer. This effect is

also illustrated in Table 5, which table presents the variation of the calculated multipole fields* for a

centered dipole as the order of fit is varied (again for probes in configuration number 1). Note that

even at its worst, this effect is very small in the dipole moment and can usually be neglected.

The systematic errors obviously are not negligible; however, they can be estimated by the proce-

dure described in the text. This was done for each of the sources tested. Table 6 compares the cal-

culated systematic error limits with the observed errors shown in Table 4. These numbers are represen-

tative of the results in general in that in every case tested, the observed error was less than the limits

calculated by the estimate of tel(s) l given by

*These numbers are the multipole coefficients (a2/._l,1) divided by the smallest radius raised to the 2]" + 1 power and hence are in

the magnetic field units (nanotesla).
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ta_

_ Table 4-Largest errors observed in dipole-moment calculations (values in 10 -3 A-m 2).

Size

Parameter

5

0.4 H

V

0.6 H

V

0.8 H

V

1.0 H

V

1.4 H

V

222.3

189.0

477.1

444.0

+795.1

822.0

1146.2

1308.0

1499.0

1825.0

1855.0

2388.0

M

2512

972

2512

972

2512

972

2512

972

2512

972

1500

275

3.6

3.5

18.3

15.7

58.0

41.1

148.0

111.0

353.0

287.0

881.0

761.0

M

144

640

1604

640

1604

640

1604

275

1604

275

1604

275

2.1

3.5

6.9

17.4

18.1

57.3

57.0

155.0

Note: 0 = observed error.

H = error in horizontal dipole-moment component.

V = error in vertical dipole-moment component.

M = true value of dipole-moment component.

0 = errors less than 10 -3 A-m 2.

Order of Fit

3

M 0

0

0

1850 0

640 -

1850 2.1

972 -

1500 11.7

972 -

1172 67.8

572 -

4 5 6 7

M 0 M 0 M 0

0 0 0

0 0 0

0 0 0

1604 0 0 0

1604 0 0 0

1604 5.0 1604 0 0

M



Table 5-Calculated x-axis multipole coefficients for a centered dipole for probe configuration 1 (values in nanoteslas).

Order of Fit

Coefficient

1 2 3 4 5 6 7

a 1

a 3

a 5

a 7

a 9

all

a13

80.0 80.0

0.0

79.999999618

-0.000000507

-0.000000202

80.000004821

0.000019175

0.000024517

0.000009742

80.000039196

0.000158821

0.000295795

0.000252243

0.00079690

79.993561739

-0.054924022

-0.197767705

-0.338142809

-0.269945145

-0.081082108

79.987034380

-0.154667296

-0.905817656

-2.742426869

-4.308601377

-3.295361917

-0.967441047

tJi



t_ Table 6-Comparison of the observed errors with the estimated systematic error limits (values in 10 .3 A-m 2 ).

Size

Parameter

Sp

0.4 H

V

0.6 H

V

0.8 H

V

1.0 H

V

1.2 H

V

1.4 H

V

Order of Fit

1 2 3 4 5 6 7

0 E 0 E 0 E 0

0222

189

477

444

795

522

531

1137

1t49

2005

3.6

3.5

t8.3

15.7

58.0

11.8

22.5

43.70

103

136 2.1

0

0

1.8

3.7

6.6

822

1146

1308

1499

1825

1855

2388

1918

3352

3359

5821

6638

13730

7636

41.1

148

111

353

287

881

761

288

381

266

1046

854

3144

2805

3.5

6.9

17.4

18.1

57.3

57.0

155

18.3

27.2

52.5

131

222

378

818

E 0 E 0 E 0 E

0 0 0 0 0 0

0 0 0 0 0 0 0

0 1.3 0 0 0 0 0

2.1 5.7 0 0 0 0 0

11.7 37.5 0 3.8 0 0

0

Note: 0 = observed error.

E = estimated error limit.

0 = errors less than 10 .3 A-m 2.

0

0

0

67.8 259 5.0 22.8 0 2.8 0 0



lel(1) = lel(2)[ = QI(k)B e (47a)

and

:':_ lel(3)t = Q3(k)B e (47b)

Note that for the lower orders of fit, the estimated errors are quite large. This indicates that in order

to obtain meaningful results, a given calculation must be made with order 2 or greater. The minimum

order of fit is dependent on the value of Q1 or Q3 for a given sample size and probe configuration.

Values of Q1 or Q3 of the order of 0.01 or less will give acceptable limits. Using these criteria, the

minimum orders of fit can be determined for the probe configurations given in Tables 2 and 3.

The results of these tests indicated that the technique is indeed a useful method of dipole-moment

determination if the data used are almost perfect. In an actual test situation, however, this is not the

case. Real data will be subject to a much larger roundoff error than computer-generated data. This

error is due to instrumentation limitations and is dependent on the magnitudes of the magnetic field

observed at a particular probe location. For testing purposes, it was assumed that the minimum ob-

servable value of magnetic field is 0.1S nanotesla, where S is a scale factor determined by the maxi-

mum value of magnetic field/-/m seen at a particular radius. For a particular value of Hrn, the scale
factor S used in the tests can be determined from Table 7.

The data used in each of the foregoing tests were modified by being rounded off to the nearest

0.1S nanotesla; then they were reanalyzed. As was expected, changes in the resultant calculations were

observed, but they were in general small when compared with the systematic error already present.

Table 8 shows the changes observed for the x-axis dipole-moment component for one particular source

(Sp = 1.4) measured with probes in configuration number 1.

Table 8 shows the important effects of the roundoff process. Notice first of all that the values

calculated from the truncated data are in general more accurate than the values using perfect data.

This effect was observed most often in the first and second orders of fit. It is indirectly due to the

Table 7-Determination of scale factor S.

Range of Hrn

(nanoteslas)

From

0

100

200

500

1000

2000

5000

To

100

200

500

1000

2000

5000

10,000

S

1

2

5

10

2O

5O

100
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Table 8-Dipole-moment calculationsfor a 0.7r1-diametersource
(actual dipole moment was1.500A-m2.).

Order of
Fit

1
2
3
4
5
6
7

Perfect Data (10- 3 A_m2)

Moment

3355.11
1221.46
1555.70
1470.62
1502.74
1499.88
1499.99

Statistical
Tolerance

6.30
1.06
0.03
0.01

RoundedData(10-3 A_m2)

Moment

1897.47
1467.84
1536.53
1496.34
1500.80
1499.48
1497.97

Statistical
Tolerance

1.43
1.13
0.27
2.63

Systematic
Tolerance

(10.3 A-m2)

13730.0
5194.3
470.70
428.50

37.60
4.97
1.11

accuracyassignedto the rounded magneticfield values. The uncertainty due to roundoff at eachof
the datapoints is +0.05S, where S is the scale factor for that particular probe location. This uncer-

tainty varies from location to location (since the field levels vary). This means that the weights w i of

each of the near-field equations will be different for each probe location. Since field levels are higher

on the closer probes, the equations for these probes will be weighted less than those for the farther

probes. This means that the systematic errors which arise from the closer probes (which are in general

larger than those from the farther probes) will be correspondingly reduced. In the cases where perfect

data were used, all the equations were weighted equally, allowing the total systematic error to be

larger.

Another effect of the roundoff is a slightly increased error as the order of fit is increased. This is

noticeable in the table for orders of fit 6 and 7. This effect is believed to be due in part to roundoff

of the data and in part to machine error.

Up to this point, the statistical uncertainty in the calculations has been neglected. This was be-

cause the uncertainty in the perfect data was very small, and the uncertainty in the calculation was

mostly due to systematic errors. However, when real data are used, the corresponding uncertainty in

the calculations becomes important. As the order of fit is increased, the systematic uncertainty de-

creases. In general, this is accompanied by an increase in the statistical uncertainty. In assigning limits

to the answer, one must choose the larger of the two. This was done for each case tested and it was

found that the actual error was within the limits predicted unless the order of fit was fairly high (see

Table 8).

Note that the uncertainty due to machine error has not been taken into account. The statistical

uncertainty is due to roundoff of the data, whereas machine errors are due to roundoff of any number

calculated by the computer. However, as was stated before, the machine errors are important only if

the order of fit is high.
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CHAPTER VII

DETECTION OF ERRORS

In an actual test situation, the accuracy usually assigned to the data is not the threshold accu-

racy of the instrumentation but the calibration accuracy (which is in general much larger). Errors in

the data within these limits are to be expected, and their effect on the accuracy of the technique must

be examined. In order to do this, the data used in the previous tests were modified to simulate linear

calibration errors and were then reanalyzed. The results show that these errors are indeed significant

and that their effect increases with the order of fit. However, comparison of the results shows that

these errors can be.detected from observations of the behavior of the higher order multipole coeffi-

cients as a function of the order of fit.

The calibration accuracy assigned to a given data point was, as before, dependent on the maximum

field level seen at that particular probe location. This accuracy was assumed to be -+S nanotesla,*

where S is the same scale factor as before. The data points were modified by errors of the form

D' = aD, where D is the actual data point, D' is the new data point, and a is the error factor

(0.99 _< a _< 1.01 ) for a particular probe location and sensor.

In order to be able to detect the presence of errors, one must know what type of behavior to ex-

pect of the calculated multipole coefficients as the order of fit is changed. A few tests were run on

single- and double-dipole sources whose multipole coefficients were easily calculable (from Equations

40 and 41). Two observations were made from these tests.

The first was that the actual multipole coefficients of each of the sources decreased significantly

as the index of the coefficient was increased, even though the size of the source was large (Sp = l .4).

In the worst cases, the coefficients decreased by about a factor of 2 as the index was raised by 1.

Table 9 compares the actual x-axis multipole coefficients** (for an x-axis dipole displaced from the

center of the source by a distance of 0.6r 1 along the +x axis) with those calculated by near-field

analysis.

The second observation was that the changes in the coefficients became smaller and smaller as the

order of fit increased. These coefficients also steadily approached the true values (until machine error

became significant).

*This corresponds to an accuracy of 1 percent of the maximum field level observable on that particular range.

**Henceforth, whenever "multipole coefficients" are mentioned, it will refer to the actual multipole coefficients (given by Equations

16a and b) divided by r]1+1 and expressed in nanotesla.
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o
Table 9-Multipole coefficients for a single displaced dipole, where a] = ajl/r_ +2 and Aaj is the change in the coefficient as one

goes from one order of fit to the next.

Calculated Value (nanoteslas)
Actual

Coefficient Value Order of Fit

(nanoteslas)

1 2 3 4 5 6 7

80.00 188.58 51.69 82.03a 1

Aa 1

a 3

Aa 3

a 7

Aa 7

a 9

Aa 9

all

Aal 1

a13

-21.6

+6.48

-2.04

+0.661

-0.218

+0.0730

78.95 80.06 80.00 79.98

136.89 30.34 3.08 1.11 .06 .02

-53.80 -12.60 -25.60 -21.08 -21.66 -21.82

41.2 13.0 4.52 .58 .16

16.61 -0.35 8.26 6.17 5.06

16.96 8.61 2.09 1.11

-6.80 .72 -2.87 -6.47

7.52 3.59 3.6

2.43 -0.44 -6.34

2.87 5.90

-0.87 -5.49

4.62

-1.38



Theseresultssuggestthe behaviorone canexpect for anarbitrary source. Sincethe multipole
coefficientsof asourcearein fact combinationsof the coefficientsfor singleoff-centereddipoles,and
sincethe latter coefficients decreaserapidly asthe index becomeslarge,the coefficientsof a compos-
ite sourcecanbeexpectedto exhibit the samegeneralbehavior. That is, the higherorder coefficients
will in generalbemuch smallerthan thoseat the lower end of the multipole spectrumof the source.
Also, thesehigherorder coefficients will in generaldecreaserapidly asthe index is increased. It might
bearguedthat by careful selectionof the locationsand magnitudesof the dipoleswithin the source,
a particular multipole coefficient canbeset to any desiredmagnitudein relation to the other coeffi-
cients. This is indeedtrue; however,the numberof parametersthat must bespecifiedincreasesrapidly
with the index. This meansthat the probability of a coefficient at the high endof the spectrum(i.e.,
abovethe fifth coefficient) havinga relativelyhigh valuewill be small if the dipolesarerandomly
placedwithin the source. The samething cannotbe saidof the lower coefficients. Hence,one can
expect largevariations from sourceto sourceat the low end of the spectrum.

The behaviorof the calculatedcoefficients for anarbitrary sourceis not at all predictable. How-
ever,in general,largechangescanbe expectedin thesecoefficients until the order of fit is at least
equalto the number of the most significant coefficients of the source. After this, the changesin the
coefficientsshouldbesmall(until machineerror becomesimportant). If the real coefficients of the
sourcedecreaseasthe index increasesthroughout the multipole spectrum,the changesin the calcu-
lated coefficientscanbeexpectedto decreaseasthe order of fit is increased.

The resultsof many testson sourceswhosemultipole coefficientswerenot known in detail seem
to bearthis theory out. Table 10 showsthe calculatedx-axis coefficients for a source (Sp = 1.2) con-

taining 20 dipoles. Notice the decrease in the magnitude of these coefficients as the index increases.

Notice also that the magnitudes of the changes in the coefficients in general decrease as the order of

fit is increased* (up to order of fit 6). These results are typical of each case tested.

When errors were introduced into the data, either by rounding off the data points or by intro-

ducing calibration factors, this behavior was changed. The effect of the errors was the same as that

caused by machine error with the exception that it occurred at a lower order of fit. It was character-

ized by increasingly large changes in the calculated multipole coefficients as the order of fit was in-

creased. The magnitudes of the calculated coefficients also became very large. When the data used in

the previous analyses was rounded off and reanalyzed, the results shown in Table 11 were obtained.

Table 12 gives the results of the analysis of the same data containing calibration errors. Notice

that the dipole moment values are affected the least by the presence of this error. Table 13 compares

the observed error in the dipole moment with the predicted error limits (either statistical or systematic,

whichever is larger) for the above cases. Note that in each case, machine error becomes significant in

the higher orders of fit. Again, these results are typical in that the error limits are in general predicta-

ble unless the machine error is large. The presence of this error is characterized by large fluctuations

in the calculated values of the multipole coefficient from one order of fit to the next and by un-

realistic values for the higher order multipole coefficients (specifically, for Table 12, order of fit 7).

*The large changes in the dipole and octopole moments from order of fit 2 to 3 are probably due to a fairly large moment (a 5 = 130

nanotesla).
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Table 10-Multipole coefficients(in nanoteslas)for a 1.2r1-diametersourcecalculatedusingperfectdata. True dipolecoefficient
= 115.44nanoteslas,and&a/is the changein the coefficientfrom oneorderof fit to the next.

Coefficient

a 1

Aa I

a 3

Aa 3

a 5

Aa 5

a 7

Aa 7

a 9

Aa 9

all

Aat 1

Order of Fit

1 2 3 4 5 6 7

-20.59
67.50 -109.25 -116.28 -115.26 -115.42 -115.45

88.09 176.75 7.03 1.02 0.16 0.03

34.62 -205.41 -235.14 -230.95 -232.36 -232.68

240.03 29.73 4.19 1.41 0.32

96.80 "135.60 -127.62 -132.69 -134.5 l

38.8 7.98 5.07 1.82

-15.56 -8.58 -17.27 -22.59

6.98 8.69 5.32

+2.25 -4.68 -12.86

6.93 8.18

-2.08 -8.25

6.17

a13 -1.79



Table 11-Multipole coefficients(in nanoteslas)for a 1.2r1-diametersourcecalculatedusingroundeddata. Truedipole
coefficient= 115.44nanoteslas,and2xajis thechangein the coefficientfrom oneorderof fit to the next.

Coefficient

a 1

Aa I

a 3

Aa 3

a 7

Aa 7

a 9

Aa 9

all

Aal 1

a13

Order of Fit

1 2 3 4 5 6 7

-2.88 10.67 -108.16 -115.57 -115.63 -115.40 -115.87

13.55 118.83 7.41 .06 .23 .47

10.40 -207.69 -233.18 -233.52 -231.72 -237.91

218.09 25.49 .07 1.8 6.19

-98.24 -133.62 -134.52 -128.10 -164.90

35.38 .9 6.42 36.8

-14.89 -15.89 -4.77

1.00 11.12

-0.38 8.66

9.04

+2.77

-116.51

11.74

-166.91

175.57

-131.45

134.22

39.38



4_ Table 12-Multipole coefficients for a 1.2r I -diameter source calculated using "uncalibrated" data. True dipole

coefficient = 115.44 nanoteslas, and Aaj is the change in the coefficient from one order of fit to the next.

Coefficient

a 1

Aa I

a 3

Aa 3

a 5

Aa 5

a 7

Aa 7

all

Aall

Order of Fit

1 2 3 4 5 6 7

-3.03 10.69 108.23

13.72 118.92

-115.93

7.70

-116.29

.36

10.52 -207.85

218.37

-234.10

26.25

-236.12

2.02

-242.33

6.21

-98.37 -134.81

36.44

-162.21

22.20

-15.33 -59.54

38.42

-2.19 -33.46

31.27

-9.57

-313.11

70.78

-583.13

420.92

-1337.49

1277.95

-2041.48

2008.02

-1544.59

1545.02

-450.36
a13



Table 13-Observed errors and computed error limits for dipole moments in Tables 10, 11, and 12

(values in nanoteslas).

Order

Of Fit

1

2

3

4

5

6

7

Perfect Data (Table 10) Rounded Data (Table 11) Uncalibrated Data (Table 12)

Observed

Error in

a 1

-118.56

-228.68

Calculated

Limits

4187

1069

Observed

Error in

a I

-112.56

-126.11

Calculated

Limits

4187

1069

Observed

Errorin

a 1

-7.74

+1.06

-0.23

-0.02

-0.01

78.96

38.32

2.30

0.27

0.20

-7.28

+0.13

+0.19

-0.04

+0.43

78.96

38.32

2.30

0.27

0.78*

-8.92

+0.61

+1.07

+2.06

+8.81

Calculated

Limits

4187

1069

78.96

38.32

2.30

1.18"

4.56*

*Statistical error limit (other values indicate estimated systematic errors).

To recapitulate, the errors associated with this near-field technique vary with the order of

fit to the near-field equations. They can be divided into three groups: systematic errors, data

errors, and machine errors. The first of these, the systematic errors, predominate at low orders of fit

(/14 - 1, 2, and 3) and decrease rapidly as the order of fit is increased. The data errors (i.e., those

caused by imperfect data) are present at every order of fit but tend to become larger as the order of
fit is increased.

These two types of errors are similar in that limits can be placed upon them (which were valid in

every case tested). Machine errors, on the other hand, are caused by roundoff of numbers by the com-

puter and are very hard to estimate. Fortunately, they are noticeable only at high orders of fit (usually

M = 6 or 7), and their presence can be detected by careful observation of the results.
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CHAPTER VIII

CONCLUSIONS

This paper has presented a detailed description of a new technique that can be used to determine

the magnetic dipole moment of a spacecraft or any other magnetic source. The major advantage of

the technique is that the data required are always easily obtained and easily analyzed (on a computer).

An extensive testing program was conducted to verify the theory. In all, over 2000 analyses

were performed, over 500 of which were on composite sources. The results of the tests allow several

conclusions to be drawn about the technique.

First, the best results are obtained if all the sensors are located along the x axis (i.e., in the + 1

configuration). The spacing of the probes is not really critical, but care should be taken to ensure that

they are neither too close together (rma x/rmi n _ 2) nor too far apart (rmax/rmi n _ 4).

Second, the magnitude of the errors obtained will decrease as r 1 (the smallest probe radius) is in-

creased. However, accurate answers were obtained for sources whose diameters were 1.4r 1 . If possi-

ble, r 1 should be approximately the diameter of the smallest sphere enclosing the source.

Third, the intermediate orders of fit (M -- 3, 4, 5) will, in general, give the answers with the

smallest uncertainty. For orders of fit lower than this, the systematic uncertainty will, in general, be

too large to be useful. For orders of fit larger than this, the possibility of large machine errors exists.

However, higher orders of fit can be used, provided that the changes in the higher coefficients are taken

into account. Analyses in which the coefficients exhibit large fluctuations or unrealistic values should

be suspect.

It should be noted that the z-axis calculations are different from those of the x and y axes in that

one has much less data to work with. Although the calculations for this axis are just as valid as for the

x and y axes, they should not be expected to be as accurate. Also, in an actual test situation, care

should be taken to ensure that there is no zero level uncertainty on the z-axis sensors of the probes be-

fore data are taken, because this will also introduce large errors.

In estimating the systematic errors for a given test case, one can use the values of Q1 and Q3 pre-

sented in Tables 2 and 3. To do this, choose the probe configuration and size parameter Spthat best

fit the particular test situation. This will provide only an approximate value for Q1 and Q3. However,

since the actual errors were much smaller than the estimated errors for the lower orders of fit, these

values are not critical.
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Thetest casesusedto verify this techniquewere fairly extensive;but it isnot assumedthat they
coveredall possibilities. However,the sourcesusedwereconsiderablymoremagneticthan the average
spacecraft.* Hence,one canassumethat the errorsobtainedwerelarger(in magneticmoment units)
than would actually beobserved.

At any rate, the techniquewasfound to work well in everycasetested. It isbelievedthat it will
work well in any casein which one canobtain good data. It isalsonot unreasonableto assumethat
further study will yield a completelycomputerizedversionof this technique.

*That is, their magnetic components were stronger.
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Appendix A

Vector Spherical Harmonics

Vector spherical harmonics arise when a vector field is transformed by a rotation of its frame of

reference. This type of transformation is more complicated than that of a scalar field because the com-

ponents of the vector field are dependent upon the axes of the particular frame of reference.

The rotation of a frame can be described in terms of an "operator" J = L + S, where L is the an-

gular momentum operator -ir x V and S is the spin operator, whose components are

S 1 = iu I x , $2 = iu 2 x , and S 3 = iu 3 x .

The operators L and S each have their own sets of eigenfunctions. For the operator L, the spherical

harmonics Y/m satisfy the relations

and

For the spin operator S, the vectors eq

and

such that

L2 Yl"m =J(J + 1)Yjm

LzYfm =mYjm •

are defined by

1

e+ 1 - v_ (ul + iu2 )'

e 0 =113 ,

1

e_l - _ (tll -- iU 2),

S 2 eq = 2eq
and

Sze q = qeq .

It is convenient to construct eigenfunctions of the operator J similar to those above for L and S.

Since the operators L and S commute with each other, and each satisfies the commutation relations

(L 1 , L 2 ) = iL3, (L 2, L 3 ) = iLl, (L 3, L 1 ) = iL 2

and

(S1, S 2 ) = iS3, etc.,
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this is easilydoneby meansof the vector addition law. This law statesthat if J1 andJ2 aretwo
angularmomentum operatorswhich satisfy the abovecommutation rulesandwhich commutewith
eachother, and if Yim (q) is the angular momentum eigenfunction of the operator Jq such that

j2yjm(q ) = j(j + 1)Yjm(q)

and

JqzYim (q) = myjm (q) ,

eigenfunctions of the operator J = J1 + J2 can be constructed from products of the functions

Y/m (1)Yqr(2). This product is an eigenfunction of the operator Jz = Jlz + J2z with eigenvalue
M = rn + r, but is not an eigenfunction of the operator j2 = j2 + j2 + j2. However, linear combina-

tions of the products Yjm (1)yqr(2) can be used to form simultaneous eigenfunctions of the operator

j2 and Jz. This eigenfunction will be denoted by Gjjq and will be defined by

+j +q

G:i q C].q(J, M; m, r)Yjm (1)Yjm (2), (A-1)

m=--j r=--q

where the quantities C/q are real numbers known as Clebsch-Gordan coefficients. These coefficients

exhibit the properties that

and

C. =0 unless M=m+r
q

J=j+q, /+q-l, ..., IJ-q["

The functions G_q are eigenfunctions of the operator j2 with eigenvalue J(J + 1) and of the operator

Jz with eigenvalue M.

Now, eigenfunctions of the operator J = L + S may be constructed using the functions eq and Yjm "

(These eigenfunctions are the vector spherical harmonics Y_I defined as Y_ in the text.*) They are

given by

+j +1

3/I =
Y_jl _ _ Cjl(J,M;m,q)g]m(O,(9)eq. (A-2)

m=- i q=-I

The values of C/.1 can be computed from Table A-1 (taken from Reference 4).

One is now interested in how the vector spherical harmonics behave when operated on by the

various vector operators (e.g., V • ; V x ). The following equations were obtained from Reference 4,

and some will be stated without proof. In these equations, the function f is a scalar function of the

radial coordinate only.

*The third subscript is equal to 1 because S2eq = 2eq = S(S + 1)eq; hence, Y_s_VIbecomes Y_3//1.
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Table A-1-Clebsch-GordancoefficientsC]I(J , M,'], q).

J=]+l

J=/

J=/-1

q=l

-(/+M)(/+M+ 1)

2] + 1)(2/+ 2)

1/2

-(]+M)(/-M+ 1)- 1/2

(2])( / + 1 )

-(/-M)(]-M+ 1)- 1/2

(2])(2] + 1 )

q=O

- 1/2

-(]-M + ll(/+M + I).]I (2]+ 1)(/+ 1)

[- M2 1/2
I

/(j + 1)

q=--I

(/-M)(/-M + If

(2f + ])(-_ + 2) "

(/-M)(/+M+ 1)

(2/)( f + 1 )

__/-M)(/+M)- 1/2

i /(2/+ I)L.

1/2

1/2

-(/+M)(/+M+ 1)- 1/2

(2/)(2/+ 1)
_a

(_rr _-_) (2_) 1/2Vx (fY],_+I) = i + f y./M. , (A-3)

V × (fY_',]-i) = i ]-- l) f(/+1_ I/2r k27_I/] Yff' (A-4)

×(fY_) =i dr fk27-_l] Y/%+l +i + flk2/_) Y/M_I, (A-5)

M _ :/+ 1_ 1/2(___ r ]r+__2)v- ) = k2/+I/ + frm ' (A-6)

,_.M (2__1) 1/2(7rf7)OeY],/-I) = f Y/M (A-7)

and

V" y M.. = 0 (foranyf)(f #) , (A-8)

LYjm =-irx VYjm = _//(]+l)¥ff, (A-9)

:/+ I'_i/2:d • : / )I/2:d •
V(fYl'm)=-_27-_l, _k'd--r _)fy/Tj+ 1 + _2-f--_] _r + _)fY},M]_I . (a-10)

The above equations can be proven in the following manner. First of all, the expression for the

quantity Vqf(r)Yim is needed, where Vq is the qth spherical component of V. This can be shown to
be equal to (Reference 4, p. 80)
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(2___._)1/2]q- l C]l(j+ 1,m+q,'m,q) 0 -- fY'+l,m+q

_2-_- 1] Cjl(]- 1,m + q,'m, q)

Consider now the quantity

This is equal to

v- (fYg) .

+_--)fY'-l,m+q "
(A-1 1)

+j +1 +1

m =--j q =--I r=--I

" eq VrYI.mCII(J,M,'m, q)

+j + 1

m=--j q=--I

VqYim@l(J,M,'m,q)

f %.l(J,M,m,q)C]l(] + 1,m+q,m,q)Yj+l,m+ q

m=-] q=-I

(2"_'i_ 1) 1/2 ( _ _-)_-_r + f Cjl(J'M"m'q)C]I(J- l'm+q;m'q)YJ-l'm+q
m=--j q=--I

However, because m + q = M, the quantities Yj+-l,m+q are independent of the summation over m and q.
Hence, since Clebsch-Gordan coefficients have the property that

+j +j'

E ' ''C#,(J, M,'m, m )Cj/(J, M ,'m, m') = 8jj, SMM, ,

m=--j m'=--j'

this expression can be reduced to

(J+l_l/2 (__r 1) C j _1'2(3 j+l\V " (fYJ]_)= \2-_] fY'+I'M(SJ-I'J- _k2"_--l] _ + -'--_) fYj-I'M_,+I']"

Substitution of the values J + 1, J- 1, and J for/" yields Equations A-6, A-7, and A-8, respectively. The

proofs of the other equations are similar.
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Appendix B

Near-Field Computer Program

A listing of the program used to generate data for the near field of a system of dipoles and also

used in the near-field analysis of these data is presented in this appendix.

Let us define Br, B o , and B e as the components with respect to an origin 0 of the magnetic field
B of a point dipole (moment = m) located at the point k (see Figure B-l). The equations for B r, B o ,

and B e are as follows:

3m'(r-k) m'r
Br(r, O, 49) = _1 - -_ '

605/2 603/2

3m'(r-k) m'O
Bo(r, O, cb) = - _2

c05/2 co3/2

and

3m'(r-k) m-q_
B4,(r, 0,0) = _3

(.05/2 (.03/2

where

t_ 1 = k(sin 0 sin 0 m

_2 = k(cos 0 sin 0m

cos (q_ - q_m ) + cos 0 cos 0 ),

cos (q$ - qSm) - sin 0 cos 0 m ) ,

@3 = k(sin 0m sin (q$ - _m ) '

and

co =r 2 +k 2-2r_ 1 .
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Figure B-l--The magnetic field B of a dipole m at the point P.
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P_,_QG_A M =_LRF I EL D
C TO GENERATE NEAR FIELD MAGNETIC DATA

EQUIVALENCE (ALPHA (i) t HX (i)) _ (BETA (1) _ HX (26)), (GAMMA (i) _HX (51))
EOUIVALENCE (UA(1),HY(t))_ (DB(t)tHY(?B))_(DC(1)_HY(SI))
OIHENSION MX(lOO)_ MY(lOg) _ MZ(IOO)_D(IOO), TD(IO0) _ PD(IO0)

DIMENSION OVX(4) _,OVY(4),DVZ(4)
DIMENSION R(4)_ THETA(4) _ GOEF(?O)
DIMENSION CX(4)_, SX(4) _ CY(4)_, SY(4)_,OCZ(4)
DIMENSION CXO(4) _SXO(4)_ CYi](4)_, SYD(4) _ OCZO(4)
DIHENSION QX(8)_, QY(8),_Z(8)_, QXO(8), QYD(8)_QZD(8)

.......... D_ ME_N,S_._I_O"_IT ITLE (20) .....................................................
OlMENSION HX(36_4 ), HY(36_4 )_ HZ(36_4 )
DIMENSION X(36)_Y(36), Z(36) _ PHI(_6)_PH(3,6)
DIMENSION T(IO)
DIMENSION ALPHA(25)TBETA(25) TGA_IMA(25) _DA(25) ,DB(25) _DC(25)

_EAL NUPX _MUPY_MUPZ_MUR_MUT_L£_LT_LP _MUP
REAL MX_MY_HZ_MLY_MLZ_MLX_ MLtMUQX_MURY_MURZ,MUTX,MUTY,MUTZ
£FAL MAX_NIN

C
C ZErO OUT ARk_AYS

00 qSO I = 1,4
CX(I) = CY(I) = SX(I) = SY(I) = OOZ(I) = O.

CXO(I) = SXD(I) = CYD(I) = SYO(I) = DCZD(I) = t.

ALPHA(I) = BETA(I) = GAMMA(l) = ,.3.

OVX(1) = OVY(1) = DVZ(1) = t,

DA(I) = i_B(I) = DC(I) = 0.

II -- I ÷ 4

QX(I) = OY(I) = QZ(I) = 0.

OX(II) = QY(II) = :_Z(II) = 0.

QXD(II5 = QYD(II) : Q_D(II) = t.

QXD(1) = QYD(I) = QZD(I) = t,
HX(T5 - _Y(I): HZ(IS: 0,

45rj CONTINUE
Tit) = 6.3t4
T (35 =2,363

T(2)=2.970

T(4)=2.132
T (5) =2,0t 5
T(6)=1.9_3
T (7)=t.805
T (85 =t. 8_0
T(9)=1.833
T (105 =1._&2

3 _O_MAT (6_10.0)

, t FORMAT(SFIO.05
,2 FO£MAT(t!}IS)

ltl3. REAO(6O_?) NUM_ICON_NOROER
IF (NUN) 430 _430_350

,350 READ(60,t) ( R(I),l = 1,NUM)

• _28 £EAD(6O,?) NO
IF(ND) tl. tt,tttC _47.9

._29 READ(60_) (HX(I) _HY(I) ,MZ(I),D(I)_TD(I) _PO(I), I = t_ND)

JO = 0
O0 4061 T = t_ND
IF(P(_5-!-.',(1)) 4062,4g_2,4OGt

q0_2 WPITE(6t,4063) I
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4[I_3 ¢'0_MAT{ _(J×, 12HE_!£3P, IN 0( _I3,?H) ,/)

JO = t

qO_[ CPNTTKILJE
IF (JQ) 4_. 65, _FI65,_2B

49S_ CONTINUE

O0 30C [ = t, !U_'i
3UO T_ETA(I) = 90.

IF (_TCON) 301__3n1 _3'3 -)

3ii: THETA(NU'-!) = ISU.

THETA (NU'! - 1; = _1-

317 CONTINUE

5 ,rlo 10 l=t ,NUH

10 THF_TA(I)=THET_(I)_.'.I17q5327

DO 625 T=_:_ND

TO(I) = Tt-l(I)'_.017453:77
OO(I) = !'0(I)_.01745327

6,_5 CONTINUE

NTFPMS = NTER_2 = 1

N P = NU M

tO = 0

_JJ = 0 .........
OO 52t L = t,36

571 DH(L) = TLOAT(L - t )_li].

_0 qo J=t,NUM

_HI=-,17_5327
.............................

90 60t L = !,56

6 !] t X ( L ) = .....................................................................................................................

LQ = t

00 109 K=1,_,6

PHI=PHI*. 1745327

...... p_H_!_K_- p H I ..........................................................
HP=HT=HP-- O.

........ .RJ = p..(.,)) .............................................
SINTJ=SI_i (THETA(J))

COSTJ=COS (THEIA(J))

00 80 I=1.,ND

.C .... C ALC.ULAT_: ._M/_GNETI.(I; FIFLD _A[ £J,THETA(J)_.PUI(.K)....OUE TO POLL I
CS=.qINTJ_-SIN([O(I)) _COS(PHIK-PO(I))

........ ALPH _.=.£.S_ CQ_S[J_COS (TP_(I) ) ..................................
9El =COSt J_SI;4(tO(I) )_COS(PHIK-PD(I) )-SINTJ_COS(TD(I) )

GAMM =SI x`(TS (.[) ) _SIN (°HIK-PL] (I) )

Q= _.'.J-"oJ, _.(Z) _i-J(I)-2. _:-'.J_ 9 (I) _ALPH

____ CZ=RJ_STq TJ _O%S_ (PHI!<) T SIN (T__(_I) ) _C. OS (PO (.!.._)_) _D (.I) ......
MLX=MX (I1 _CS

.... MLY=HY (I) _(PJ_'SINTJ _STN(pHI.K.)_-D(.[)_SIN(Ti_. (I)) _SIN (PD(I)))
MLZ=MZ(T') _ (PJ_COS_TJ-O(I)_COS(TD([)))

ML=MLX+ML Y+P_LZ ..............
CS=3._ML! (S{_#.I (O.)_Q_Q)

......... .HU_X-HX C[ ) _SINTJ_COS (#H[K) .............
HI.;RY=MY (T.) _SINTJ_SIN (PHI K)

MUPZ=MZ(T)_COSTJ

.... MOT-X=M X ([) '_COSTJ-_-GOS (pHIK) ......................

MUTY=MY(%)_COSTJ_SIN (PHIK)

MU! Z=-MZ(1)'_'SINTJ

..............M Lt.p X =_-..F!X (I)_ S ! N (PH!.K.) .............................................
HUPY=HY ([) _COS (PHIK)
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MUPZ-Oo
..... ,_-CI_--_-M-O _-'/+MURZ ........................................................

MUT=MUTX_- MUTY_MUTZ

MUP=MUPX÷ MUPY+MUPZ

QI=I./(SQPT (Q)'_Q)

LR=MUR'FQI

........ L_T=._M..UT'QI.............................
LP=MUP_QI

C MAGNETIC FI ELi)S
9R=CS'_(RJ-D(I)_ALPH )-LR

8T=-CS_O(I) _BET -LT
8P=CS'_D (-!)-_GAi4M -LP ...............................

c TOTAL FI,LO

H.P,=HR+_R

..............HI-HT÷BT ................................... .............
HP=HP÷_P

___ :_.0.C.O.N__TI.NU E .............................................................................
OIFF=IHE!A(J)-I.S/OB

IF (DIFF) 20_30T40

2{i IFtABSIDIFF)-.OI) 30,30,25
25 Z(K} =-HP,_I00000,

30

X(K) =HI _100000,

Y(K) =-HP_IOi] 000.

GO TO 36.}
X(K) :H'o ('tOO000 .

Z(K) =Ht _tOOi]OO.
Y(K) =--!4P_lOOOOO.

.... GOTO 367 .....

_0 IF(ABS(DTFF)-.Ol) 30,30945

45 Z(K) =H-,_ I00_J O0 •

X(K) =-HT_IO000O.

Y (K) =-HP_IO00OO.
36n CONTINUE
tOl FORMAT( IOX ,3(FZO.tO,2X) ,/)

1U2 FORMAT( IOX± I5)
HX(K_J) = X(K)

HY (KfJ) -- Y (K)
HZ(K_J) :: Z(K)

100 CONTINUE
C HAVE MAGNETrC FIELO
C NON CALL FOURIER ANALYSIS SUBROUTINES

372 FORMAT(I,2OX_,LBHCOEF FOR PROBE NO. _I1)

C

C

CALL FOUi?IER(NOROER_ X,COEF)
CX(J) = SOEF(2)

SX(J) = COEF(3)

CALL FOU_IER(NORD_:R_ Y_COEF)
SY(J) = COEF(3)

CY(J) = COEF(2)

CALL FOURIE£(NORDER_ Z,OOEF)

OCZ(J) = COEF(t)
5_[J CONTINUE

5_,_3 IF((+-J) Ti.O#,5;}#,90
50q JJ = JJ÷;
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.............N_: = NP-'_ ...........................
LO = O

ISTART .= (Jj-l)_J 4- I

....... I ST-OP = JJ -_ 4 ..................

WRITE (61, 195) (I_ I=ISTART ,I STOP)

155 FORMAT (!,Hl,W(I6X_SHPP, O_E,I?,IOX) _//_6H T_4ETA,&X_IHX,gX,IHY_gX_-iH_

I•3(12X,L_4X_,qX_IHY_qX_IHZ)I)

..............00--22_g_?-_- t-,3-6..........................

WRTl'F(61_156) PH(K) _(HX(K_L)_HY(K_L)_HZ(K_L) _L = I._4)

2°_5___ CONTINUE

I:)6 FC.,RMAT (tV,F5, t • 3 (LX, Fg-3) _ 3 (4X _ F r_- 3 _ IX_ Fg" 3_ LX•Fg"3))

IF(ICON) 4020_#02U_4030

_4_.oZ.?_.._N._J=____.I/M_-2_...........................................
GO TO 40_1

4030 NJ = NUM

#031 CALL MAXMIN(MAX_MINt3B_HX(L_NJ))
R3 = R(N.J)_i%(NJ)_kI(NJ)_-8OO 01

C_X = .2_ _ (_IAX-MIN)_R.3

CALL M#.X'4 IN (MAX _MIN _3_ _HY ( t •N J) )

CALL MAXMIN(MAX_ MIN_ 3u_HZ ( 1_ N J) )

............B1= ABsc_x)

.......... 82 --" A_L_.I.(___<IN.) ...........................

IF(91-B2) 4070,4U7!],¢÷080

40r, O BZ = NAX_F,T3 .........................

GO TO _OZi

q{]70 _]7 = MIN_R3

4OF1 CONTINUF

...... __a,= ..s.9_£_(:_._X_]x+___y__?,,y__ti,]z,_z)
501 O0 502 I = 1_4

........ OQ.#02 L =_.__$_3_6_ ...............
HX(L_I) "= HY(L,I) = HZ(L,I) -- O.

5<i2 CONTINUE

2250 CONTINUE

C

9_ CONTINUE

C AT THIS ._OI_.iT ALL CALCULATIONS A_IEI COMPLETE

C FROM HE_÷ ON IS MAINLY OUTPUT- mLOTTING AND PQ, INTING

C

C PPINT SE_;TION

C
.......... -_ - _-,'-"T::7 ......... . _ .............C Ci ANGE P_I FROM RADIANS :To OEGRkES

OH] (t)=Q. __ ....................
O0 150 I=2,36

19[; PH.[ (I) =P_ I (I-t) + 1=_.

IF(TZ,EQ. I) 1112,1113

ill2 WPIIE(6t, tSt)
_t-i_E---r-_;_TqA-T(///27//)22,2o x, 45H_4AGNETIC FIELD CALSUL. A TIONS--P,_,() ]E LOCATe.

tONS )

O0 161 I= I _NLJM

_HETA(1) = THETA(1)/ °0L745R2/

IGl CONTINUE

........._w_.P,iZE (_t, 152) (I,R(I) ,THETA (I) , I=/ _NUM)

157 FC_MAI (4T]X,F;HPROBE(•IL_20#) IS LOCATEO AT R = ,Flt.q,13h GM. THCT_

..... 1. =._.__._F1..1._+_1-X#THDEGPCES /)
1113 WPITE (61_ 153) NO
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153 FORMAT(/I_2OX,18HFIELD PROOUCFD BY ,I2,22H DI°OLES DETERMINEO BY

DO 162 I : I_ ND

TO(I) = TD(I)/.01745327

PO(I) = PO(I)/.OiTq5327

162 CONTINUE

WRITE(61. 15q) (I,MX(I) _I,MY (I),I,HZ(I),I,D(I),I,T[)(I) _I_P_J(I) _I=l,

IND)

154 FORMAT(IX,3HHX(_I2_2H) =,Flt.4,1X,3HMY(_I2,2H)=,FII.4,1X,3HMZ(,I2_

12H)=_FII. 4,IX,2HO(,I2,2H)=FII.4,[X_3HTO(,I2,2H)=,Fll.4,1X,3HPO(,I_

3,2H)=,FII .4)

DN=O .

DE=0,

OD=O.

O0 _OlO I=t,NO

DN=ON+HX (I)

OE=DE-MY (I)

lOtO DD=DO-MZ(I)

WRITE (61_ lOlt) ON,OE,i_O

WPITE(6I, 4032) B

#032 FOPMAT(2P, X_27HMAGNETIZATION ESTI!'4ATION = _F20.10_//)

1011 FORMAT(g(/) _45X_ 20HTOTAL DIPOLE MOMENTS _//_50X_ZHNORTH =_ .....

tFil.4_ / ,50X, 6HEAST = ,Fl1.4,/, 50X, 7HDOWN = , FII.4,////)

PLACE: F.C.¢:_ IN PROPER FORM FOR MATRIX .....................................

IF (ICON) 401m40t,40P_

401 N = NUH-Z

CXA3 =.2_(CX(NUM-1)+CX(NUM)+SY(N UM-I)+SY(NUM))

SXA3 = ._5_(SX(NUH-i)÷SX(NUH) -C¥(NUN-t)-CY(NUN)) ........

OCZA3 = .5_(DCZ(NUH-i)+OCZ(NUM))

CXA30 = .5

SXA3D = .5

.............. DCZA3D._.__.7£LT ......................
GO TO _03

__ 402.N = NUN ................................................................................
403 DO 404 I = I_N

NN = I÷N

QX(I) = CX(I)

(_X(NN) -- -SY(.[)

QY(I) = qX(I)

QY(NN) : CY(I)

QZ(I) = !]CZ(1)

414 rvONTI_UE

IF(ICON) 405,405,406

........ _9-5 NM : 2'_("UM-2)

QX(NM+I) = -CXA3

QX[) (NM+!).=.C _xA_3D

QY (NM+I)=-SXA3

_YO(NM+t) =SXA3D

QZ (N+I) =- DCZA3

.......... _Zp(N+I) =.__OCZA30 ....................................................
NEOX = N!4+1

..... NEQ7 = Nt_tH-i .........................
GO TO 80,1

4:16 NFQX = 2_NUM

NEQZ = NiJM

C __NO__ _(VERYTHING IS IN THE CO!{_ECT FORM FOR SOLN RY HATRIXX .....

B_]T CONTINUE
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1 3HQYO , 12X _ 3HQZ , tZ×l, 3HQZ'J _ //)

12X_

911 FORMAT( 15×_ 7(F15.7 ,1X),/)

qL_ FOF-'H&T..!__t_SX±_5(E_I'5.7 ,lX) ,/)
WPITE(6t.,qll) (R(1) , <_X(I) , QXO(I),OY(i)'oYD-(-I]--_-5-2(I)_SZJ(I) ,

.... t I =_I.,_L).....................................................
OC q13 I = I,N

I? = I + N

WPITE(61,gt2) R(I)_QX(I..)-)_Q×9(I2)_QY(I2) _QYD(I?)

913 CONTINUE

IF (ICON)'_lg,410_411

41[! KL = 2.___{L_ 3 -3 ....................
WRITE (61,91l) (R(N+I) ._QX(KL) _,QXD(KL) _QY (KL) ,QYO(KL) _QZ(N+I) _,

t OT_D(N+t) )

41:1 CONTINUE

4 .? 5 .C A._LL M A T ? I :×( ! b_'..0N___t_l.__!4 u H, _E Qx ,N T E F' M S, R _ O X, Q × O., & L P UA, 0 A) ..........
4:__0 CALL M#T'._IX(ICON_i,NU'4_,NEQX_NTEPdS,R_QY_QYD_BETA,D B)

,_.73 FORMAl( GOX, 6HXAXIS _ /)

8!q FO_.MAT( '>0×, bHYAXIS _/)

_iJ5 FORMAT( qOX_ OHZAXIS _ //)

C_LL MAT#IX(ICON,O,NUM,NEQZ,NTERM2,R_QZ_QZD_GAMMA_OC)

. WRITE(61_27.) ........................................................
DO _0 I = L_NTERMS
J = 2_I I

21 FORMAT (4H A(_I2,6H,1) = ,Fl£.9_IX_2H+-_FlO.5,

1 4H B(,I2_6H_L) = ,FL6.9,1X_2H+-_F10.5_

. t 4H .....A ( ,I 2 _6H, _ ) __= .. , F t _. 9,1X, Z._H+?__?_FIO_._5) - .........
.)u CONTINUE

'_2.7 FCPHAI(30X_ 3_HCALCUL_ITEO MULTIPOLE COEFICIENTS _ /7_, 7X_

• _ ..... 6HX-AX]:S_ 8X,BHVAO.IANCE, 18X_ _J4Y AXtS_SX, 8HV_RIANCE-_-8_X, "

t £HZ AYIS_ 5X, 8H_ARIANCE_/)

C CALCULATC MOMENTS

RP=R(1) _;;_(1) _P,(i)_.OO_Oi

ALPHA (1) = ALPH._ (l) '_R_.

_ET_ (1) =- _ETA (1) "_t<R

- G_HMA (1) =-GAH4A (1)_RR .............

I_'=NEQX-NTEPMS .........
OA(i) = IDA(t)_RR_I(IR)

._ OP(1)=Oq(1) _;_1 (IR) ...............................
IR=NEQZ-_._ TERM2

OC(1)=DC(1) _'RR_T (IR)

WRITE(6t,.?O50)ALPHA(1) ,O:A(I) ,_ETA(1) ,t.)B(1),GAMMA(I) _DC(1)

2050 FORMAI(_(./)__l.z3__.X_.._.25HCALCULATEO.O!POLE..MOMENTS_._ _20X._2.gH90 PERCENT
t CONFIDANCE LIMIIS ,/_20X,gHMND'_.TH = _F20.LO,2OX_F20.lO_/_2i]X_

lgH,_EAST = _F20.!i]9?rJX_F20 _O,I,20X,9HMOONN = _F20.lO,20X_F20

110,/7//)
C 0;4£CK FOR ANOTH&R ANALYSIS

30_8

300 q

301P

NIE-PHS = NTERHS + 1

NTERM? = NTL_-RM2 + i

IF(_!EOZ- NTERM2) 330_._-3908,3_09

NTEPM2 d 1

IF(NEQX- NIE_.MS) 7olo,_iJt0,#li
NTERMS = 1

GO TO 4.?_,4,
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43n CONTINUE
STOP

END

.................... _ P_PDU] I N E MA T R I X ( NO O_N___NA..X l_._S____ N E_._Q_t,Ip]L_ Aj_ D±_.Y __.V_Y ) ....
C TO FORN WEIGHTED MATRIX EQUATIONS

DIMENSION _(1) _A(1) _ 0(1)
DIMENSION C(25,25) , M(25_25)

OIHENSION Y(25) tVY(25) _._X(_5) _RAD(4) ............................
DIMENSION _(25_25)

REAL M ...................................................
DO 1 I = 1,25
X(I) = Y(I) = VY(1) = 0.

DO I -J = 1,25

I C(I,J) = M(I._J). =_.0-.

O0 2 I = I,NR

2 RAO(I) = P(1)/R{I)

IF (NCON) 6,6,3
3 IF (NAXI!_) 5m5_4
4 N = NEQ/?

GO TO 9 ....................
5 N = NEO

GO TO 9 ......
IF(NAXIS) 8,6,7

f N = (NEQ-I)/2

GO TO 9

N = NEO-C ..............................
9 DO 17 I = I,N

DO 17 d = I,IP

RP = RA!](I) _(2_J+I)
F=I.

OF = I.

TJ = 1.

O0 10 K : 1,J
F = F_FLOAT(K)
OF = DF'_FLOAT(2*K -i)

i_ TJ = -2._'TJ

FF = {-Z,_FLOAT (J))/(TJ_F)

RP = RR _FF_t]F

IF(NAY, IS) 12,12,11

.tl C(I,J) = _2_,__FLOAT{J)._r<R.
IN = I + N

C(IN,J) : R_
GO TO 13

12 C(I,J) = RR ...............
13 CONTINUE

IF (NCON) 14,14,17

C COHaUT__ C(NE!],J) FOR 'J CONFIGURATION
IF (NA×IS_ lb,16, 15

15 C(NEQ,J) = FLOAT((. J-l) LOAT(J
GO TO 17

"[_ C(NEQ_J) = 2, _ FLOAT(J) _RA
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C HAVE (C(ITJ) FO ,_ ALL CONFIGS AND AXES
C CONSTRUCT LLSQ AND DATA MATRICES

DO 18 J = t,l o

DO t8 I = 17NEQ .......

i8 X(J) = X(J) +(A(I)_'C(I7J))/(D(I)_'O(I))
DO i9 K = iT IP

O0 19 O = iTIP

DO t9 I =I,NEQ

lq M(J,K) = M(J,K) + (C(I,J)'_'G(17K))/(O(I)_O(I))
C HAVE N_IIGHTE'3 MAT_ICES

O0 30 I = I,IP

C

Y(I) = X(I) ..........

3 O_ C O_U_E
CALL NATTNV(M, IP, Y_, 17 OETER)

{_ IS NOW THE INVERSE OF H())( Y = MULTIPOLE MOMENTS
C COM°UTF DEVIATIONS ANU RESIDUALS

RES" = O.
SS2 = O.
SP = O.

SO = O.

O0 21 I = I_NEQ
FL = O.

O0 22 J = I_IP
FL = FL _ O(I,J)_Y(J)

•22 CONTINUE

S = (A(I)-FL)/D(I)

RES = PET + S_S

SS = SIA(1)

S.q = SORT(SS'_SS)

SP = SP + S
SO = SO ,_- SS
SS? = SS_ + SS_SS

?l CONTINUE
IDF = _JE _l -- I p

S2 = PEg/ FLOAT(ILIF)

4it+ FOPMAT( !OX,6(EtS.7,2X))

4"5_ FO_MA'[(5)X, t2HOArA MATRIX 7/)

#51 FOi?MAT(2XTI,5!]X,2OH-IEASUREMENT _!AT_IX ,/)

452 FORMAT( ?X,/,SOX_SHINVERSE , /)

4'5..3FOPMAT( tOX,IIH PARAMETERS 7/)

45_ FORMAT( __OX, 2IHO_GREES OF FREEOOM = , I5,/,

i IOX, t6qSIGMA SQUAREO = , E20.IO 7 /, IOX, 8HOETM : ,
t E20.10 , /)

412_ FO£MAT(I]XT/750X_20HNi=A_ FIELO MATRIX ,//)
C VA_IANtE OF Y(I) : VY(I)

O0 23 I : t,IP
QU = M(I,I)_S2

IF(OU.LT. 0.) :501,9O__
5 ] I. WPITE (61,903) l _1717t4 (I _I) 7 RES,N-], IP,S2

5U3 FORMAT(i!_XTqH3EV( ,1271X,32H) IS NEGATIVE. PARAMETERS ARE.. ,/7

iIOX,BHINVERSE( ,1271H_ ,I2,4H) = 7F20.lO,/, IOX75HRES = 7F20.14
t,/,SHNEQ = ,I272X,SHI# = - _I2,?X-,B-HS2 =- ,F-2-O-.t4) ......
QU = -OU

5:)? VY(I) = :;QRI(QU)
23 CONTINUE
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SUBROUTINEMATINV(A_,N,B_-_,DETERM)
DIMENSION IPIVOT (25) ,,A(25_ 25) _8(L_5,I),INDEX(25_2)

C F

C INII IALIZAT ION F

C F

OETERH=I. O

O0 20 d=t _,N F

20 IPIVOT(J) =0 F

DO 550 I=i_N F
C F

O SEARCH FOR PIVOT ELEM!_NT F

C F

AMAX=O.O F

DO 105 J:i,N

IF (IPIVOT(J)) 105_60

60 DO 100 K=i,N F
IF (IPIVOT(K}-i) 80, tOO, 740

C!._OIF(ABSF(a(J,K)).GI.AB_F{AMAX) ) 65_100

_5 IPOW=J F

ICOLUM:K

AMAX=A (J_ K)

tO0 CONTINUE F

lOS CONTINUE
IPIVOT(ICOLUM)=IPIVOT(IGOLUM)*I F

C F

C INTERCHANGE ROWS ]0 PUT PIVOT ELEMENT ON DIAGONAL F
C F

IF (IROW. EQ.ICOLUM) 260,140
.t#_ OETERM=-P ETERM F

DO 200 L = 1, N

SWAP=A (I_OW_L) .........
A(IPOW_,L)=A(ICOLUM, L)

200 A (ICOLU4, L) =SWAP F

IF(M) 21!_,260

218 DO 250 L=l, M F
SNAP=8 ( I!_ON, L) F
B(IPOW_L) =8 (ICOLUH_L) F

2 '5_3 B ( I C-6LSM_ L ) =_74-AP-- ..................................................... F

26_q INDFX (I_I)=IROW F

INDEX (I ,? )= ICOLUM F

PIVOT =A(ICOLUM,ICOLU_'i)
DET FRH=D-. TERM_PIVOT

PIVTN= i. O/PIVOT

C-...........-O I v ID-E--h-IV()-I---i={OW-i[jY--ffIVOT- _E_FIE_ T ................................ F

C F

A(ICOLUM, ICOLUM)=L.O

DO 350 L=I,N F

_5!] A(ICOLUM_L) =A(ICOLUM_L)_PIVIN

IF(N) 36!7,3_0
.........................................................................................360 DO 37O L_-I,_'I F

37£ _ (ICOLUH, L) =B{ ICOLUM _,L)_PI VIN
O F

C REIIUCE NON-PIVOT #_O'4S F
...........................................................................................................

380 O0 550 LI=I_N F
_ _ £_Z ..... 1 ......................................................................................

IF(L1 ,E!'_.ICOLUH) 550_,q00
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4,.rl0 T=A (LI,Ir'OLUM),,

A (L1 , ICOL UM) =0.8

DO #50 L=I_N F
450 A (LI_ L) =A (LI_ L)-A (ICOLU_,L) *T ...... F

IF(M) 46 _,550

450 O0 500 L--1,M ....

.... S_ 0 _B_.(L.!__L) -g (L!___L)_-8 ( ICOLUM, L) _T ..... F
5_0 CONTINUE .......... F

C F
C INTERCHA\f GE COLUMNS .............. " ....
C F

O0 710 I=I,N F
L=N+I-I

IF (INDEX(L_,I).EQ.INDEiX(L_2) ) 710_,630 "

&30 J_OW=IND_ X (L_,I) F
JCOLUM:INDEX {L_2) ..............

DO 705 K=I_N F

SY_AP=A (K, JROW) F
A (K _JROW) :A (K_JCOLUH)
A (K,JCOLUM) =SWAP ....................

705 CONTINUE F

FrO CONTINUE F
74n_ RETURN F

END

_S_OU T IN E F OU RI ER (NFI T_D_ _ CO E F )
C

C CALCULAT_ FOURIER COEF UP TO AMPLITUDES OF SIN(NFIT_THEIA)
C AND COS(NFIT_THETA)
O COEF(I)=_C TE_M

C COEF(ZK) IS COEF OF COS(K_THETA)
C COEF(ZK+I) IS COEF OF SIN(K_THETA)
C

"5

DIMENSION DATA
A=Oo

DO 5 I=1_36
A=A+DATA(I)

COEF(1)=A/36.

(1) _COEF(1)

DO 100 N=I_NFIT ...........
T HFTA =-. 1 7_532 7
_I=TI=B2=T2=O,

DO 50 J=l ,36
THETA=TH':_ITA+..t745327

C=COS (N '_]HETA)

S=SIN (N_T HETA)

F_2=B2÷S_S

BI=BI+C-_C

TI=DATA (.I)_C÷TI

_ T2=DATA (J) _S+T2 ..............
IS[OR=2_N
COEF (IST9 R) =T1/E_I ............

Ir]0 COEF (ISTOR+I) =T2/L_2
REIURN
END
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SUBROUTINE LIST(AMPtNTERM_IFORMAT)
DIMENSION AMP(t)

GO T0(I_?_3) IFORMAT
ID=IHX

GO TO #

2 IO=IHY

GO TO #

7 ID:IHZ

# J=2

WRITE (6t, 300) IO_AMP (I)

300 FORMAI(31X_2HDC,AI_3H = ,Eli.4)

#OO

SOB

RETURN

END

O0 #DO I=I,NTERM

WP.ITE (61, I00) I_ ID,AMP(J) , I, IO, AMP(J+I)

FORMAT (3n X _ 12, IHC, AI, 2H- , Eli. 4, _X,12, tHS, At, ?.H=
J=J+2

L

WP.ITE (61,500)

FORMAT (/)

_Eil,4)

SUBROUTINE MAXMIN(AMAX,AMINtN_PIS)
DIMENSION PTS(1}

AMAX=AMIN=PTS(1)

tO0

DO 100 I=2,N

AMAX=AMAXI(AMAX_PTS(I))

AMIN=AMINI(AMIN, PTS(I))
RETURN

END
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